15.圓C:(x-1)2+(y-2)2=25,直線l:(2m+1)x+(m+1)y-7m-4=0(m∈R).
(1)證明:不論m取什么數(shù),直線l與圓C恒交于兩點(diǎn);
(2)求直線l被圓C截得的線段的最短長度,并求此時(shí)m的值.

分析 (1)判斷直線l是否過定點(diǎn),可將(2m+1)x+(m+1)y-7m-4=0,m∈R轉(zhuǎn)化為(x+y-4)+m(2x+y-7)=0,利用$\left\{\begin{array}{l}{x+y-4=0}\\{2x+y-7=0}\end{array}\right.$,即可確定所過的定點(diǎn)A(3,1);再計(jì)算|AC|,與圓的半徑R=$\sqrt{5}$比較,判斷l(xiāng)與圓的位置關(guān)系;
(2)弦長最小時(shí),l⊥AC,直線l被圓C截得的弦長最小,由kAC=-$\frac{1}{2}$,得直線l的斜率,從而由點(diǎn)斜式可求得m的值.

解答 (1)證明:由(2m+1)x+(m+1)y-7m-4=0,m∈R得:
(x+y-4)+m(2x+y-7)=0,
∵m∈R,
∴$\left\{\begin{array}{l}{x+y-4=0}\\{2x+y-7=0}\end{array}\right.$得x=3,y=1,
故l恒過定點(diǎn)A(3,1);
又圓心C(1,2),
∴|AC|=$\sqrt{5}$<5(半徑)
∴點(diǎn)A在圓C內(nèi),從而直線l恒與圓C相交.
(2)解:∵弦長的一半、該弦弦心距、圓的半徑構(gòu)成一個(gè)直角三角形,
∴當(dāng)l⊥AC(此時(shí)該弦弦心距最大),直線l被圓C截得的弦長最小,
∴直線l的斜率為k=-$\frac{1}{{k}_{AC}}$=$\frac{1}{\frac{2-1}{1-3}}$=2
∵A(3,1)、圓心C(1,2),圓的半徑為r=5
∴弦心距AC=$\sqrt{(3-1)^{2}+(1-2)^{2}}$=$\sqrt{5}$
∴最短弦長=2×$\sqrt{{r}^{2}-A{C}^{2}}$=2×$\sqrt{{5}^{2}-(\sqrt{5})^{2}}$=4$\sqrt{5}$
∵直線l:(2m+1)x+(m+1)y-7m-4=0
整理得:y=-$\frac{2m+1}{m+1}$x+$\frac{7m+4}{m+1}$
∴-$\frac{2m+1}{m+1}$=2
解得m=-$\frac{3}{4}$
∴直線l被圓C截得的線段的最短長度為4$\sqrt{5}$,此時(shí)m的值為-$\frac{3}{4}$

點(diǎn)評(píng) 本題考查直線與圓的位置關(guān)系及恒過定點(diǎn)的直線,難點(diǎn)在于(2)中“弦長最小時(shí),l⊥AC”的理解與應(yīng)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知正數(shù)a,b,c滿足4a-2b+25c=0,則lga+lgc-2lgb的最大值為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.?dāng)?shù)列{an}滿足a1=10,an+1=an+18n+10(n∈N*)記[x]表示不超過實(shí)數(shù)x的最大整數(shù),則$\lim_{n→∞}$($\sqrt{a_n}$-[${\sqrt{a_n}}$])=(  )
A.1B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.某籃球運(yùn)動(dòng)員在一次投籃訓(xùn)練中得分ξ的分布列如表所示,其中a,b,c成等差數(shù)列,且c=ab,則這名運(yùn)動(dòng)員投中3分的概率是( 。
ξ023
Pabc
A.$\frac{1}{4}$B.$\frac{1}{7}$C.$\frac{1}{3}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.直線L經(jīng)過點(diǎn)A(-3,4),且在x軸上截距是在y軸截距的2倍,求該直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知銳角A是三角形ABC的一個(gè)內(nèi)角,a,b,c是各內(nèi)角所對(duì)的邊,若sin2A-cos2A=$\frac{1}{2}$,則下列各式正確的是( 。
A.b+c≤2aB.a+c≤2bC.a+b≤2cD.a2≤bc

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知等差數(shù)列{an}共有20項(xiàng),所有奇數(shù)項(xiàng)和為132,所有偶數(shù)項(xiàng)和為112,則等差數(shù)列的公差d=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知f(x)是定義域?yàn)镽的偶函數(shù),且f(2+x)=f(2-x),當(dāng)x∈[0,2]時(shí),f(x)=x2-2x,則f(-5)=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,S5=35,a5和a7的等差中項(xiàng)為13.
(1)求an及Sn;
(2)令bn=$\frac{1}{{{a_n}^2-1}}$(n∈N*),求數(shù)列{bn}的前項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊答案