3.直線$\sqrt{3}$x+y-2=0截圓x2+y2=4得到的劣弧所對的圓周角為(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

分析 由圓的標(biāo)準(zhǔn)方程找出圓心坐標(biāo)和半徑r,利用點到直線的距離公式求出圓心C到已知直線的距離d,由垂徑定理及勾股定理求出直線被圓截得的弦長,利用三角函數(shù)即可得出結(jié)論.

解答 解:過O作OC⊥AB,垂足為點C,
由圓的方程x2+y2=4,得到圓心O的坐標(biāo)為(0,0),半徑r=2,
∵圓心到直線$\sqrt{3}$x+y-2=0的距離d=|OC|=$\frac{2}{2}$=1,
∴直線被圓截得的弦|AB|=2$\sqrt{4-1}$=2$\sqrt{3}$,
∴sin∠AOC=$\frac{\sqrt{3}}{2}$,
∴∠AOC=$\frac{π}{3}$,
∴∠AOB=$\frac{2π}{3}$.
故選D.

點評 此題考查了直線與圓相交的性質(zhì),涉及的知識有:圓的標(biāo)準(zhǔn)方程,點到直線的距離公式,垂徑定理,勾股定理,以及等邊三角形的判定與性質(zhì),當(dāng)直線與圓相交時,常常根據(jù)垂徑定理由垂直得中點,再由弦長的一半,圓的半徑及弦心距構(gòu)造直角三角形,利用勾股定理來解決問題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)f(x)=|x+1|+|x+a|,若不等式f(x)≥6的解集為(-∞,-2]∪[4,+∞),則a的值為( 。
A.-7或3B.-7或5C.-3D.3或5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=-ex+ex(其中e=2.71828…是自然對數(shù)的底數(shù))
(1)求函數(shù)f(x)的最大值;
(2)設(shè)g(x)=lnx+$\frac{1}{2}$x2+ax.若對任意x1∈[0,2],總存在x2∈[0,2],使得g(x1)<f(x2),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若tanα=1,則$\frac{1}{{{{cos}^2}α+sin2α}}$的值為(  )
A.1B.$\frac{5}{3}$C.$\frac{2}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.對于實數(shù)a,b,c,“a>b”是“ac2>bc2”的必要不充分條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.7個人站成一排,若甲,乙,丙三人互不相鄰的排法共有1440種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)f(x)=sin(ωx-$\frac{π}{6}$)(ω>0)和g(x)=2cos(2x+φ)+1的圖象的對稱軸完全相同,若x∈[0,$\frac{π}{2}$],則f(x)的取值范圍是[-$\frac{1}{2}$,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知定義在R上的函數(shù)f(x)在(-∞,-2)上是減函數(shù),若g(x)=f(x-2)是奇函數(shù),且g(2)=0,則不等式xf(x)≤0的解集是( 。
A.(-∞,-2]∪[2,+∞)B.[-4,-2]∪[0,+∞)C.(-∞,-4]∪[-2,+∞)D.(-∞,-4]∪[0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知條件p:x2≥1,條件q:2x≤2,則¬p是q成立的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既非充分也非必要條件

查看答案和解析>>

同步練習(xí)冊答案