8.與x軸相切且和半圓x2+y2=4(0≤y≤2)內(nèi)切的動(dòng)圓圓心的軌跡方程是( 。
A.x2=-4(y-1)(0<y≤1)B.x2=4(y-1)(0<y≤1)C.x2=4(y+1)(0<y≤1)D.x2=-2(y-1)(0<y≤1)

分析 當(dāng)兩圓內(nèi)切時(shí),根據(jù)兩圓心之間的距離等于兩半徑相減可得動(dòng)圓圓心的軌跡方程.

解答 解:設(shè)動(dòng)圓圓心為M(x,y),做MN⊥x軸交x軸于N.
因?yàn)閮蓤A內(nèi)切,|MO|=2-|MN|,
所以$\sqrt{{x}^{2}+{y}^{2}}$=2-y,
化簡得x2=4-4y(1≥y>0)
故選A.

點(diǎn)評 此題考查學(xué)生掌握圓與圓的位置關(guān)系所滿足的條件,考學(xué)生的計(jì)算能力,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.為了保護(hù)環(huán)境發(fā)展低碳經(jīng)濟(jì),某單位在國家科研部門的支持下,進(jìn)行技術(shù)攻關(guān),新上了把二氧化碳處理轉(zhuǎn)化為一種可利用的化工產(chǎn)品的項(xiàng)目,經(jīng)測算,該項(xiàng)目月處理成本y(元)與月處理量x(噸)之間的函數(shù)關(guān)系可近似地表示為f(x)=$\left\{\begin{array}{l}{\frac{1}{3}{x}^{3}-80{x}^{2}+5140x,x∈[120,144]}\\{\frac{1}{2}{x}^{2}-100x+80000,x∈[144,400]}\end{array}\right.$且每處理一噸二氧化碳得到可利用的化工產(chǎn)品價(jià)值為300元,若該項(xiàng)目不獲利,國家將給予補(bǔ)償.
(Ⅰ)當(dāng)x∈[150,300]時(shí),判斷該項(xiàng)目能否獲利?如果獲利,求出最大利潤;如果不獲利,則國家每月至少需要補(bǔ)貼多少元才能使該項(xiàng)目不虧損?
(Ⅱ)該項(xiàng)目每月處理量為多少噸時(shí)?才能使每噸的平均處理成本最低?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,邊長為2的正方形ABCD中,點(diǎn)E是AB的中點(diǎn),點(diǎn)F是BC的中點(diǎn).將△AED、△DCF分別沿DE、DF折起,使A、C兩點(diǎn)重合于點(diǎn)A',連結(jié)EF,A'B.
(1)求異面直線A'D與EF所成角的大。
(2)求三棱錐D-A'EF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知數(shù)列{an}的首項(xiàng)a1=m,其前n項(xiàng)和為Sn,且滿足Sn+Sn+1=3n2+2n,若對?n∈N+,an<an+1恒成立,則m的取值范圍是(-2,$\frac{5}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列四個(gè)命題中,真命題的是( 。
A.空間中兩組對邊分別相等的四邊形為平行四邊形
B.所有梯形都有外接圓
C.所有的質(zhì)數(shù)的平方都不是偶數(shù)
D.不存在一個(gè)奇數(shù),它的立方是偶數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.如圖,圓(x+2)2+y2=4的圓心為點(diǎn)B,A(2,0),P是圓上任意一點(diǎn),線段AP的垂直平分線l和直線BP相交于點(diǎn)Q,當(dāng)點(diǎn)P在圓上運(yùn)動(dòng)時(shí),點(diǎn)Q的軌跡方程為${x^2}-\frac{y^2}{3}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.從點(diǎn)A(2,-1,7)沿向量$\overrightarrow{a}$=(8,9,-12)的方向取線段長|AB|=34,則B點(diǎn)的坐標(biāo)為( 。
A.(18,17,-17)B.(-14,-19,17)C.$({6,\frac{7}{2},1})$D.$({-2,-\frac{11}{2},13})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.為了整頓食品的安全衛(wèi)生,食品監(jiān)督部門對某食品廠生產(chǎn)甲、乙兩種食品進(jìn)行了檢測調(diào)研,檢測某種有害微量元素的含量,隨機(jī)在兩種食品中各抽取了10個(gè)批次的食品,每個(gè)批次各隨機(jī)地抽取了一件,下表是測量數(shù)據(jù)的莖葉圖(單位:毫克).

規(guī)定:當(dāng)食品中的有害微量元素的含量在[0,10]時(shí)為一等品,在[10,20]為二等品,20以上為劣質(zhì)品.
(1)用分層抽樣的方法在兩組數(shù)據(jù)中各抽取5個(gè)數(shù)據(jù),再分別從這5個(gè)數(shù)據(jù)中各選取2個(gè),求甲的一等品數(shù)與乙的一等品數(shù)相等的概率;
(2)每生產(chǎn)一件一等品盈利50元,二等品盈利20元,劣質(zhì)品虧損20元,根據(jù)上表統(tǒng)計(jì)得到甲、乙兩種食品為一等品、二等品、劣質(zhì)品的頻率,分別估計(jì)這兩種食品為一等品、二等品、劣質(zhì)品的概率,若分別從甲、乙食品中各抽取1件,設(shè)這兩件食品給該廠帶來的盈利為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.隨著經(jīng)濟(jì)模式的改變,微商和電商已成為當(dāng)今城鄉(xiāng)一種新型的購銷平臺(tái).已知經(jīng)銷某種商品的電商在任何一個(gè)銷售季度內(nèi),每售出1噸該商品可獲利潤0.5萬元,未售出的商品,每1噸虧損.3萬元.根據(jù)往年的銷售經(jīng)驗(yàn),得到一個(gè)銷售季度內(nèi)市場需求量的頻率分布直方圖如右圖所示.已知電商為下一個(gè)銷售季度籌備了130噸該商品.現(xiàn)以x(單位:噸,100≤x≤150)表示下一個(gè)銷售季度的市場需求量,T(單位:萬元)表示該電商下一個(gè)銷售季度內(nèi)經(jīng)銷該商品獲得的利潤.
(Ⅰ)將T表示為x的函數(shù),求出該函數(shù)表達(dá)式;
(Ⅱ)根據(jù)直方圖估計(jì)利潤T不少于57萬元的概率;
(Ⅲ)根據(jù)頻率分布直方圖,估計(jì)一個(gè)銷售季度內(nèi)市場需求量x的平均數(shù)與中位數(shù)的大小.

查看答案和解析>>

同步練習(xí)冊答案