3.已知變量x,y的取值如表:
  x0134
  Y2.24.34.86.7
利用散點圖觀察,y與x線性相關(guān),其回歸直線方程為$\stackrel{∧}{y}$=0.95x+a,則a的值為( 。
A.0B.2.2C.2.6D.3.25

分析 根據(jù)題中數(shù)據(jù)求得樣本中心點($\overline{x}$,$\overline{y}$),代入回歸直線方程即可求得a的值.

解答 解:由題意可知:$\overline{x}$=$\frac{1}{4}$(0+1+3+4)=2,$\overline{y}$=$\frac{1}{4}$(2.2+4.3+4.8+6.7)=4.5,
由線性回歸方程過樣本中心點,即4.5=0.95×2+a,
解得:a=2.6,
故答案選:C.

點評 本題考查線性回歸方程的應(yīng)用,考查性回歸方程過樣本中心點,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知數(shù)列{an}滿足a1=16,an+1-an=2n(n∈N*),則$\frac{a_n}{n}$的最小值為7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在三棱錐S-ABC中,SA=SB=SC=a,AB=BC=AC=$\sqrt{2}$a,那么SA與平面ABC所成的角的余弦值為(  )
A.$\frac{{\sqrt{6}}}{3}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{{\sqrt{10}}}{10}$D.$\frac{{\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.拋物線x2=4y的焦點為F,經(jīng)過其準(zhǔn)線與y軸的交點Q的直線與拋物線切于點P,則△FPQ外接圓的標(biāo)準(zhǔn)方程為(x-1)2+y2=2或(x+1)2+y2=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知曲線C的極坐標(biāo)方程是ρ=2cosθ,以極點為平面直角坐標(biāo)系的原點,極軸為x軸的正半軸,建立平面直角坐標(biāo)系,直線l的參數(shù)方程是$\left\{\begin{array}{l}x=-2+4t\\ y=3t\end{array}\right.$(t為參數(shù)).
(1)寫出曲線C的參數(shù)方程,直線l的普通方程;
(2)求曲線C上任意一點到直線l的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,已知正三棱柱ABC-A1B1C1的所有棱長都為2,D為CC1中點,E為BC的中點.
(1)求證:BD⊥平面AB1E;
(2)求三棱錐C-ABD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.某四棱錐的三視圖如圖所示(單位:cm),則該幾何體的體積是( 。
A.18cm3B.6cm3C.$\frac{9}{2}c{m^3}$D.$\frac{27}{2}c{m^3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,右焦點F到直線x=$\frac{a^2}{c}$的距離為1.
(Ⅰ)求橢圓C的方程;
(Ⅱ)不過原點的直線l與橢圓C交于A,B兩點,線段AB中點為D,O為坐標(biāo)原點,直線OD與y=$\frac{1}{2}$x+2平行,求△OAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某電力公司調(diào)查了某地區(qū)夏季居民的用電量y(萬千瓦時)是時間t(0≤t≤24,單位:小時)的函數(shù),記作y=f(t),如表是某日各時的用電量數(shù)據(jù):
t(時)03691215182124
y(萬千瓦時)2.521.522.521.522.5
經(jīng)長期觀察y=f(t)的曲線可近似地看成函數(shù)y=Asin(ωt+φ)+B(A>0,0<φ<π).
(Ⅰ)根據(jù)以上數(shù)據(jù),求出函數(shù)y=Asin(ωt+φ)+B(A>0,0<φ<π)的解析式;
(Ⅱ)為保證居民用電,電力部門提出了“消峰平谷”的想法,即提高高峰時期的電價,同時降低低峰時期的電價,鼓勵企業(yè)在低峰時用電.若居民用電量超過2.25萬千瓦時,就要提高企業(yè)用電電價,請依據(jù)(Ⅰ)的結(jié)論,判斷一天內(nèi)的上午8:00到下午18:00,有幾個小時要提高企業(yè)電價?

查看答案和解析>>

同步練習(xí)冊答案