分析 (1)由△AEF為等邊三角形,O為EF的中點(diǎn),可得AO⊥EF,再由面面垂直的性質(zhì)可得AO⊥平面EFCB,則AO⊥BE;
(2)取BC的中點(diǎn)G,連接OG,可得OG⊥EF,由(1)OA⊥OG,建立如圖的空間坐標(biāo)系,分別求出平面EAC與平面EAB的一個法向量,利用兩法向量所成角的余弦值可得二面角C-AE-B的余弦值.
解答 (1)證明:∵△AEF為等邊三角形,O為EF的中點(diǎn),
∴AO⊥EF,
∵平面AEF⊥平面EFCB,AO?平面AEF,
∴AO⊥平面EFCB
∴AO⊥BE;
(2)解:取BC的中點(diǎn)G,連接OG,
∵EFCB是等腰梯形,
∴OG⊥EF,
由(1)知AO⊥平面EFCB,
∵OG?平面EFCB,∴OA⊥OG,
建立如圖的空間坐標(biāo)系,
則OE=1,BG=2,GH=1,BH=1,EH=BHtan60°=$\sqrt{3}$,
則E(1,0,0),A(0,0,$\sqrt{3}$),B(2,$\sqrt{3}$,0),C(-2,$\sqrt{3}$,0),
$\overrightarrow{EA}=(-1,0,\sqrt{3})$,$\overrightarrow{EC}=(-3,\sqrt{3},0)$,$\overrightarrow{EB}=(1,\sqrt{3},0)$.
設(shè)平面EAC的一個法向量為$\overrightarrow{m}=({x}_{1},{y}_{1},{z}_{1})$,
則$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{EA}=-{x}_{1}+\sqrt{3}{z}_{1}=0}\\{\overrightarrow{m}•\overrightarrow{EC}=-3{x}_{1}+\sqrt{3}{y}_{1}=0}\end{array}\right.$,令z1=1,則$\overrightarrow{m}=(\sqrt{3},3,1)$;
設(shè)平面EAB的一個法向量為$\overrightarrow{n}=({x}_{2},{y}_{2},{z}_{2})$,
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{EA}=-{x}_{2}+\sqrt{3}{z}_{2}=0}\\{\overrightarrow{n}•\overrightarrow{EB}={x}_{2}+\sqrt{3}{y}_{2}=0}\end{array}\right.$,令${x}_{2}=\sqrt{3}$,則$\overrightarrow{n}=(\sqrt{3},-1,1)$.
∴cos<$\overrightarrow{m},\overrightarrow{n}$>=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$=$\frac{1}{\sqrt{13}×\sqrt{5}}=\frac{\sqrt{65}}{65}$.
∴二面角C-AE-B的余弦值為$\frac{\sqrt{65}}{65}$.
點(diǎn)評 本題考查線面垂直的判定,考查空間想象能力和思維能力,訓(xùn)練了利用空間向量求解二面角的平面角,是中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0.64 | B. | 0.896 | C. | 0.512 | D. | 0.384 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | $\frac{{\sqrt{3}}}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{63}{125}$ | B. | $\frac{62}{125}$ | C. | $\frac{63}{250}$ | D. | $\frac{31}{125}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | $\frac{3}{4}$ | D. | $\frac{7}{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com