2.已知函數(shù)f(x)=ax3+bx-7,g(x)=f(x)+2,且f(2)=3,則g(-2)=-15.

分析 由f(2)=8a+2b-7=3,得到8a+2b=10,從而f(-2)=-8a-2b-7=-17,由此能求出g(-2).

解答 解:∵函數(shù)f(x)=ax3+bx-7,g(x)=f(x)+2,且f(2)=3,
∴f(2)=8a+2b-7=3,∴8a+2b=10,
∴f(-2)=-8a-2b-7=-17,
∴g(-2)=f(-2)+2=-17+2=-15.
故答案為:-15.

點評 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要認真審題,注意函數(shù)性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某旅游景點有一處山峰,游客需從景點入口A處向下沿坡角為α的一條小路行進a百米后到達山腳B處,然后沿坡角為β的山路向上行進b百米后到達山腰C處,這時回頭望向景點入口A處俯角為θ,由于山勢變陡到達山峰D坡角為γ,然后繼續(xù)向上行進c百米終于到達山峰D處,游覽風(fēng)景后,此游客打算乘坐由山峰D直達入口A的纜車下山結(jié)束行程,如圖,假設(shè)A、B、C、D四個點在同一豎直平面
(1)求B,D兩點的海拔落差h;
(2)求AD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)a為實數(shù),函數(shù)f(x)=x2e1-x-a(x-1).
(1)當(dāng)a=1時,求f(x)在(${\frac{3}{2}$,2)上的最大值;
(2)設(shè)函數(shù)g(x)=f(x)+a(x-1-e1-x),當(dāng)g(x)有兩個極值點x1,x2(x1<x2)時,總有x2g(x1)≤λf'(x1),求實數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知P(-2,y)是角θ終邊上一點,且sinθ=$\frac{{\sqrt{5}}}{5}$,則y=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列各組函數(shù)中表示同一函數(shù)的是( 。
A.f(x)=x-1與g(x)=$\sqrt{{{(x-1)}^2}}$B.f(x)=x與g(x)=${(\sqrt{x})^2}$
C.f(x)=x2-x與g(t)=t2-tD.f(x)=x-1與g(x)=$\frac{{{x^2}-1}}{x+1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)f(x)滿足:
①定義域為R;
②?x∈R,有f(x+2)=f(x);
③當(dāng)?x∈[0,2]時,f(x)=1-|x-1|.記φ(x)=f(x)-log8|x|(x∈R).根據(jù)以上信息,可以得到函數(shù)φ(x)的零點個數(shù)為( 。
A.14B.12C.8D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若函數(shù)f(x)=x3+3x-1在區(qū)間[n,n+1)(n∈Z)上有零點,則n=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.下列命題中:
①若集合A={x|kx2+4x+4=0}中只有一個元素,則k=1;
②已知x${\;}^{\frac{1}{2}}$-x${\;}^{-\frac{1}{2}}$=2,則x2-x-2=24
③函數(shù)y=$\frac{1}{1-x}$在(-∞,0)上是增函數(shù);
④方程2|x|=log2(x+2)+1的實根的個數(shù)是2.
所有正確命題的序號是③④(請將所有正確命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.命題“任意的x>1,都有ex>1”的否定是( 。
A.存在x0≤1,使${e^{x_0}}≤1$成立B.存在x0>1,使${e^{x_0}}≤1$成立
C.任意的x≤1,都有ex≤1成立D.任意的x>1,都有ex≤1成立

查看答案和解析>>

同步練習(xí)冊答案