16.已知函數(shù)f (x)=$\frac{1-x}{e^x}$.
(Ⅰ)求曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程;
(Ⅱ)求函數(shù)f(x)的零點(diǎn)和極值.

分析 (Ⅰ)求函數(shù)y=f(x)的導(dǎo)數(shù),然后求解斜率,利用點(diǎn)斜式求解在點(diǎn)(0,f(0))處的切線方程;
(Ⅱ)利用方程的解求函數(shù)f(x)的零點(diǎn),通過導(dǎo)函數(shù)為0以及函數(shù)的單調(diào)性判斷函數(shù)的極值點(diǎn),求解函數(shù)的極值.

解答 解:(Ⅰ)因?yàn)?f'(x)=\frac{x-2}{e^x}$,f'(0)=-2.
因?yàn)閒(0)=1,所以曲線f(x)在(0,f(0))處的切線方程為2x+y-1=0.…6分
(Ⅱ)令$f(x)=\frac{1-x}{e^x}=0$,解得x=1,所以f(x)的零點(diǎn)為x=1.
由$f'(x)=\frac{x-2}{e^x}=0$解得x=2,
則f'(x)及f(x)的情況如下:

x(-∞,2)2(2,+∞)
f'(x)-0+
f(x)極小值$-\frac{1}{e^2}$
…所以函數(shù)f(x)在x=2時(shí),取得極小值$-\frac{1}{e^2}$…12分

點(diǎn)評(píng) 本題考查函數(shù)的導(dǎo)數(shù)的綜合應(yīng)用,切線方程以及函數(shù)的極值的求法,考查轉(zhuǎn)化思想以及計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知向量$\overrightarrow{a}$=(-1,2),$\overrightarrow$=(2,-2),則$\overrightarrow{a}$•($\overrightarrow{a}$+$\overrightarrow$)=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在數(shù)列{an}中,an+1-9an=9n+1,a1=9.
(1)求an
(2)設(shè)bn=an(1+$\frac{2}{{9}^{n}}$)-1,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知曲線C:xy=1,過C上一點(diǎn)An(xn,yn)作一斜率為kn=-$\frac{1}{{x}_{n}+2}$的直線交曲線C于另一點(diǎn)An+1(xn+1,yn+1),點(diǎn)列{An}的橫坐標(biāo)構(gòu)成數(shù)列{xn},其中x1=$\frac{11}{7}$
(Ⅰ)求xn與xn+1的關(guān)系式;
(Ⅱ)令bn=$\frac{1}{{x}_{n}-2}$+$\frac{1}{3}$,求證:數(shù)列{bn}是等比數(shù)列,并寫出通項(xiàng)公式;
(Ⅲ)若cn=3n-λbn(λ為非零正數(shù),n∈N*),試確定λ的值,使得對(duì)任意n∈N*,都有cn+1>cn成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.解方程:log${\;}_{\frac{1}{2}}$(9x-1-5)=log${\;}_{\frac{1}{2}}$(3x-1-2)-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.求函數(shù)f(x)=$\frac{\sqrt{x+1}-2}{x+4}$,x∈[0,3]的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若△ABC外接圓的半徑為5,則$\frac{AB}{sinC}$=( 。
A.5B.10C.15D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.將函數(shù)f(x)=3cos($\frac{π}{2}$x)與g(x)=x-1的所有交點(diǎn)從左往右依次記為A1,A2,A3,…,An,若O為坐標(biāo)原點(diǎn),則|$\overrightarrow{O{A}_{1}}$+$\overrightarrow{O{A}_{2}}$+…+$\overrightarrow{O{A}_{n}}$|=( 。
A.0B.1C.3D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.函數(shù)f(x)=$\frac{a{x}^{2}+1}{bx+c}$(a、b、c∈Z)是奇函數(shù),且f(1)=2,f(2)<3
(1)求a、b、c的值;
(2)當(dāng)x<0時(shí),求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案