19.已知函數(shù)f(x)=$\frac{{e}^{x}({x}^{2}-bx)}{x}$(b∈R).若存在x∈[$\frac{1}{2}$,2],使得f(x)+xf′(x)>0,則實(shí)數(shù)b的取值范圍是(  )
A.(-∞,$\frac{5}{6}$)B.(-∞,$\frac{8}{3}$)C.(-$\frac{3}{2}$,$\frac{5}{6}$)D.($\frac{8}{3}$,+∞)

分析 求出f′(x),問題轉(zhuǎn)化為b<$\frac{{x}^{2}+2x}{x+1}$在[$\frac{1}{2}$,2]恒成立,令g(x)=$\frac{{x}^{2}+2x}{x+1}$,x∈[$\frac{1}{2}$,2],求出b的范圍即可.

解答 解:∵f(x)=$\frac{{e}^{x}({x}^{2}-bx)}{x}$=ex(x-b),
∴f′(x)=ex(x-b+1),
若存在x∈[$\frac{1}{2}$,2],使得f(x)+xf′(x)>0,
則若存在x∈[$\frac{1}{2}$,2],使得ex(x-b)+xex(x-b+1)>0,
即b<$\frac{{x}^{2}+2x}{x+1}$在[$\frac{1}{2}$,2]恒成立,
令g(x)=$\frac{{x}^{2}+2x}{x+1}$,x∈[$\frac{1}{2}$,2],
則g′(x)=$\frac{{x}^{2}+2x+2}{{(x+1)}^{2}}$>0,
g(x)在[$\frac{1}{2}$,2]遞增,
∴g(x)最大值=g(2)=$\frac{8}{3}$,
故b<$\frac{8}{3}$,
故選:B.

點(diǎn)評 本題考查了函數(shù)的單調(diào)性問題,考查導(dǎo)數(shù)的應(yīng)用以及函數(shù)恒成立問題,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列說法錯(cuò)誤的是(  )
A.存在函數(shù)f(x)使得對任意的實(shí)數(shù)y,都有等式f(cosy)=cos2y成立
B.存在函數(shù)f(x)使得對任意的實(shí)數(shù)y,都有等式f(siny)=sin2y成立
C.存在函數(shù)f(x)使得對任意的實(shí)數(shù)y,都有等式f(cosy)=cos3y成立
D.存在函數(shù)f(x)使得對任意的實(shí)數(shù)y,都有等式f(siny)=sin3y成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知:tanα=2,求值:①tan(α-$\frac{π}{4}$);②sin2α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知復(fù)數(shù)z滿足(z-1)(2+i)=5i,則|$\overline{z}$+i|=$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.從3男4女共7人中選出3人,且所選3人有男有女,則不同的選法種數(shù)有( 。
A.30B.32C.34D.35

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.lg$\frac{5}{2}$+2lg2+($\frac{1}{2}$)0=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知|$\overrightarrow{a}$|=4,|$\overrightarrow$|=8,$\overrightarrow{a}$與$\overrightarrow$的夾角是120°,
(1)求|$\overrightarrow{a}$-2$\overrightarrow$|;
(2)若($\overrightarrow{a}$+2$\overrightarrow$)⊥(k$\overrightarrow{a}$-$\overrightarrow$),求實(shí)數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.直線x+y+2=0截圓x2+y2-4x-5=0的弦長是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知變換T把平面上的所有點(diǎn)都垂直投影到直線y=x上.
(1)試求出變換T所對應(yīng)的矩陣M.
(2)求直線x+y=2在變換T下所得到的圖形.

查看答案和解析>>

同步練習(xí)冊答案