7.橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1與$\frac{{y}^{2}}{5}$+$\frac{{x}^{2}}{4}$=1有相同的(  )
A.離心率B.焦距C.長(zhǎng)軸長(zhǎng)D.焦點(diǎn)

分析 利用橢圓的標(biāo)準(zhǔn)方程及其a2=b2+c2即可判斷出結(jié)論.

解答 解:∵在橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1與$\frac{{y}^{2}}{5}$+$\frac{{x}^{2}}{4}$=1中,
4-3=5-4=1,
∴橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1與$\frac{{y}^{2}}{5}$+$\frac{{x}^{2}}{4}$=1有相同的焦距.
故選:B.

點(diǎn)評(píng) 本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì),考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知f(x) 是定義在R上且以2為周期的偶函數(shù),當(dāng)0≤x≤1時(shí),f(x)=x2,如果直線y=x+a與曲線y=f(x) 恰有三個(gè)不同的交點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A.[2k,2k+$\frac{1}{4}$](k∈Z)B.(2k-$\frac{1}{4}$,2k)(k∈Z)C.(2k-$\frac{1}{2}$,2k)(k∈Z)D.(2k,2k+$\frac{1}{4}$)(k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.若1<a<4,-2<b<4,則a-b的取值范圍是( 。
A.(-1,8)B.(0,2)C.(-3,6)D.(-3,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.假設(shè)有兩個(gè)分類變量X和Y的2×2列聯(lián)表為:
X
Y
y1y2總計(jì)
x15b5+b
x215d15+d
總計(jì)204060
對(duì)同一樣本,以下數(shù)據(jù)能說明X與Y有關(guān)系的可能性最大的一組為( 。
A.b=5,d=35B.b=15,d=25C.b=20,d=20D.b=30,d=10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.下列4個(gè)結(jié)論:
①a∈{a};②∅∈{∅};③a∈∅;④a∉∅.
其中不正確結(jié)論的序號(hào)是③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的離心率e=$\frac{\sqrt{3}}{2}$,焦距為2$\sqrt{3}$.
(Ⅰ) 求橢圓C的方程;
(Ⅱ) 過橢圓C的左頂點(diǎn)B且互相垂直的兩直線l1,l2分別交橢圓C于點(diǎn)M,N(點(diǎn)M,N均異于點(diǎn)B),試問直線MN是否過定點(diǎn),若過定點(diǎn)?求出定點(diǎn)的坐標(biāo);若不過定點(diǎn),說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.3(π+1)B.4π+1C.π+$\frac{8}{3}$D.2π+$\frac{10}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.在平面直角坐標(biāo)系xOy中,已知四點(diǎn)A(12,0),B(-4,0),C(0,-3),D(-3,-4),把坐標(biāo)系平面沿y軸折為直二面角.

(Ⅰ)求證:BC⊥AD;
(Ⅱ)求平面ADO和平面ADC的夾角的余弦值;
(Ⅲ)求三棱錐C-AOD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知x,y滿足條件$\left\{\begin{array}{l}x≥0\\ y≤x\\ 2x+y-3≤0\end{array}\right.$,若z=x+3y的最大值為4.

查看答案和解析>>

同步練習(xí)冊(cè)答案