分析 (1)記“A、B兩人同時甲學校實習”為事件EA,由等可能事件概率計算公式能求出A,B兩人同時去甲學校實習的概率.
(2)記“A、B兩人同時去同一學校實習”為事件E,利用對立事件概率計算公式能求出甲、乙兩人不在同一崗位服務的概率.
(3)隨機變量ξ可能取的值為1,2,分別求出相應的概率,由此能求出ξ的分布列和數(shù)學期望.
解答 (本小題滿分14分)
解:(1)記“A、B兩人同時甲學校實習”為事件EA,
則A,B兩人同時去甲學校實習的概率P(EA)=$\frac{{A}_{3}^{3}}{{C}_{5}^{2}{A}_{4}^{4}}$=$\frac{1}{40}$,…(4分)
即A、B兩人同時甲學校實習的概率是$\frac{1}{40}$.
(2)記“A、B兩人同時去同一學校實習”為事件E,
P(E)=$\frac{{A}_{4}^{4}}{{C}_{5}^{2}{A}_{4}^{4}}$=$\frac{1}{10}$,
∴A,B兩人不去同一所學校實習的概率P($\overline{E}$)=1-P(E)=$\frac{9}{10}$.…(8分)
所以,甲、乙兩人不在同一崗位服務的概率是$\frac{9}{10}$.
(3)隨機變量ξ可能取的值為1,2 …(9分)
P(ξ=2)=$\frac{{C}_{5}^{2}{A}_{3}^{3}}{{C}_{5}^{3}{A}_{4}^{4}}$=$\frac{1}{4}$,…(10分)
P(ξ=1)=1-P(ξ=2)=$\frac{3}{4}$…(11分)
ξ的分布列為:
ξ | 1 | 2 |
P | $\frac{3}{4}$ | $\frac{1}{4}$ |
點評 本題考查概率的求法,考查離散型隨機變量的分布列和數(shù)學期望的求法,是中檔題,解題時要認真審題,注意對立事件概率計算公式的合理運用.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | 2$\sqrt{3}$ | C. | $\frac{\sqrt{6}}{2}$ | D. | $\frac{3\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
年利潤 | 1.2萬元 | 1.0萬元 | 0.9萬元 |
頻數(shù) | 20 | 60 | 40 |
合格次數(shù) | 2次 | 1次 | 0次 |
年利潤 | 1.3萬元 | 1.1萬元 | 0.6萬元 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com