4.已知函數(shù)f(x)=$\frac{x}{4}$+$\frac{a}{x}$-lnx-$\frac{3}{2}$,其中a∈R,若曲線y=f(x)在點(diǎn)(1,f(1))處的切線垂直于直線x-3y=0,則切線方程為3x+y-4=0.

分析 由曲線y=f(x)在點(diǎn)(1,f(1))處的切線垂直于直線x-3y=0可得f′(1)=-3,可求出a的值,可得切點(diǎn)坐標(biāo),即可求出切線方程.

解答 解:∵f(x)=$\frac{x}{4}$+$\frac{a}{x}$-lnx-$\frac{3}{2}$,
∴f′(x)=$\frac{1}{4}-\frac{a}{{x}^{2}}-\frac{1}{x}$,
∵曲線y=f(x)在點(diǎn)(1,f(1))處的切線垂直于直線x-3y=0,
∴f′(1)=$\frac{1}{4}$-a-1=-3,
解得:a=$\frac{9}{4}$,
∴f(1)=1,
∴切線方程為y-1=-3(x-1),即3x+y-4=0.
故答案為:3x+y-4=0.

點(diǎn)評 本題考查的知識點(diǎn)是利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程,求出a是關(guān)鍵,難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖:在四棱錐P-ABCD中,底面ABCD是矩形,PD⊥平面ABCD,且PD=DA=DC=2.
(1)若M、N分別是PD、AB的中點(diǎn),證明:MN∥平面PBC;
(2)求二面角C-BP-D的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.用分析法證明:$\sqrt{8}$+$\sqrt{7}$>$\sqrt{5}$+$\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知拋物線C:y2=2px(p>0)的焦點(diǎn)F到準(zhǔn)線的距離為$\frac{1}{2}$.過點(diǎn)A(x0,0)(x0≥$\frac{1}{8}$)作直線l交拋物線C于P,Q兩點(diǎn)(P在第一象限內(nèi)).
(1)若A與焦點(diǎn)F重合,且|PQ|=2.求直線l的方程;
(2)設(shè)Q關(guān)于x軸的對稱點(diǎn)為M,直線PM交x軸于B,且BP⊥BQ.求點(diǎn)B到直線l的距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右焦點(diǎn)分別為F1、F2,離心率為$\frac{\sqrt{2}}{2}$,點(diǎn)M在橢圓上,且MF2⊥x軸,過F2作與OM垂直的弦CD,若△F1CD的面積為20$\sqrt{3}$,求橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.計算:i+i-2+i-3+i-4=2i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.下列條件能判斷△ABC一定為鈍角三角形的是①②
①sinA+cosA=$\frac{1}{5}$
②$\overrightarrow{AB}$•$\overrightarrow{BC}$>0
③b=3,c=3$\sqrt{3}$,B=30°  
④tanA+tanB+tanC>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)cosα=$\frac{3}{5}$,cosβ=$\frac{4}{5}$,并且α和β都是銳角,求cos(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知長方體ABCD-A1B1C1D1中,AB=2,AD=1,AA1=1,點(diǎn)E在棱AB上移動,當(dāng)AE=$\sqrt{2}$時,直線D1E與平面AA1D1D所成角為45°.

查看答案和解析>>

同步練習(xí)冊答案