2.已知函數(shù)f(x)=lnx+$\frac{a}{x-1}$(a為常數(shù)).
(1)若函數(shù)y=f(x)在(e,+∞)內(nèi)有極值,求實數(shù)a的取值范圍;
(2)在(1)的條件下,若x1∈(0,1),x2∈(1,+∞),求證:f(x2)-f(x1)>e+2-$\frac{1}{e}$.(e為自然對數(shù)的底數(shù))

分析 (1)若函數(shù)f(x)在(e,+∞)內(nèi)有極值,f′(x)=0有不等的實根,其中至少一個在(e,+∞)內(nèi),令φ(x)=x2-(2+a)x+1=(x-α)(x-β),可得αβ=1,β>e.即可求實數(shù)a的取值范圍;
(2)確定函數(shù)f(x)在(0,α),(β,+∞)上單調(diào)遞增,在(α,1),(1,β)上單調(diào)遞減,可得f(x2)-f(x1)≥f(β)-f(α),再構(gòu)造函數(shù),即可證明結(jié)論.

解答 解:(1)∵f′(x)=$\frac{{x}^{2}-(2+a)x+1}{{x(x-1)}^{2}}$,函數(shù)f(x)在(e,+∞)內(nèi)有極值,
∴f′(x)=0有不等的實根,其中至少一個在區(qū)間(e,+∞)內(nèi),
令φ(x)=x2-(2+a)x+1=(x-α)(x-β),可得αβ=1.
不妨設(shè)β>α,則α∈(0,1),β∈(1,+∞),
∴β>e.
∴φ(0)=1>0,
∴φ(e)=e2-(2+a)e+1<0,
∴a>e+$\frac{1}{e}$-2,
即實數(shù)a的取值范圍是(e+$\frac{1}{e}$-2,+∞);
證明:(2)由上知,f′(x)>0,可得0<x<α或x>β;f′(x)<0,可得α<x<1或1<x<β,
∴函數(shù)f(x)在(0,α),(β,+∞)上單調(diào)遞增,在(α,1),(1,β)上單調(diào)遞減,
由x1∈(0,1),得f(x1)≤f(α)=lnα+$\frac{α}{α-1}$,
x2∈(1,+∞),得f(x2)≥f(β)=lnβ+$\frac{β}{β-1}$,
∴f(x2)-f(x1)≥f(β)-f(α)
又αβ=1,α+β=a+2,β>e
∴f(β)-f(α)=lnβ+$\frac{β}{β-1}$-(lnα+$\frac{α}{α-1}$)=2lnβ+β-$\frac{1}{β}$,
令H(β)=2lnβ+β-$\frac{1}{β}$(β>e),
則H′(β)=($\frac{1}{β}$+1)2>0,
∴H(β)在(e,+∞)上單調(diào)遞增,
∴H(β)>H(e)=e+2-$\frac{1}{e}$,
∴f(x2)-f(x1)>e+2-$\frac{1}{e}$.

點評 本題考查導(dǎo)數(shù)知識的綜合運用,考查導(dǎo)數(shù)的幾何意義,考查不等式的證明,考查函數(shù)的單調(diào)性,正確求導(dǎo),確定函數(shù)的單調(diào)性是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.棱長為2的正四面體的四個頂點都在同一個球面上,若過該球球心的一個截面如圖所示,求圖中三角形(正四面體的截面)的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若函數(shù)y=ln($\sqrt{1+a{x}^{2}}$-2x)為奇函數(shù),則a=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)m,n是不同的直線,α,β,γ是不同的平面,則下列命題中真命題的是(  )
A.若α⊥β,m∥α,則m⊥βB.若m?α,n?β,且m⊥n,則α⊥β
C.若α∥β,β∥λ,則α∥λD.若m∥α,n∥α,則m∥n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)復(fù)數(shù)z滿足(2-i)z=5i(i為虛數(shù)單位),則復(fù)數(shù)z在復(fù)平面內(nèi)對應(yīng)的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在△ABC中,a、b、c分別為角A、B、C所對的邊,且(a2+b2-c2)tanC=$\sqrt{2}$ab.
(1)求角C的大。
(2)若c=2,b=2$\sqrt{2}$,求邊a的值及△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.命題“有些實數(shù)的絕對值是正數(shù)”的否定是所有實數(shù)的絕對值不是正數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.由正數(shù)組成的集合A具有如下性質(zhì):若a∈A,b∈A且a<b,那么1+$\frac{a}$∈A.
(1)試問集合A能否恰有兩個元素且$\frac{4}{3}$∈A?若能,求出所有滿足條件的集合A;若不能,請說明理由.
(2)試問集合A能否恰有三個元素?若能,請寫出一個這樣的集合A;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.如表是關(guān)于出生男嬰與女嬰調(diào)查的列聯(lián)表,那么A=53,B=35,C=100,D=82.
晚上白天總計
男嬰45B
女嬰A47C
總計98D180

查看答案和解析>>

同步練習(xí)冊答案