【題目】如圖,點(diǎn)是菱形所在平面外一點(diǎn), , 是等邊三角形, , , 是的中點(diǎn).
(Ⅰ)求證: 平面;
(Ⅱ)求證:平面平面;
(Ⅲ)求直線與平面的所成角的大小.
【答案】(Ⅰ)見解析; (Ⅱ)見解析; (Ⅲ).
【解析】試題分析:
(Ⅰ)要證明與平面平行,只要找到一條平行線,由于是中點(diǎn), 與的交點(diǎn)是中點(diǎn),則必有,從而有線面平行;
(Ⅱ)要證面面垂直,就要證線面垂直,從圖形中知,在,計(jì)算后可得,從而于是有線面垂直,從而得面面垂直;
(Ⅲ)易證平面,從而知為在平面內(nèi)的射影,因此就是直線與平面所成的角,在中求解可得.
試題解析:
(Ⅰ)證明:連接.
在菱形中, 為中點(diǎn),且點(diǎn)為中點(diǎn),
所以,
又平面, 平面.
所以平面
(Ⅱ)證明:在等邊三角形中,
, 是的中點(diǎn),所以.
在菱形中, , ,
所以.
又,所以,所以.
在菱形中, .
又,所以平面.
又平面,
所以平面平面.
(Ⅲ)因?yàn)?/span>平面, 平面,所以
又因?yàn)?/span>, 為中點(diǎn),所以
又,所以平面,則為直線在平面內(nèi)的射影,
所以平面為直線與平面的所成角
因?yàn)?/span>,所以,
在中, ,所以
所以直線與平面的所成角為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a>0,a≠1.設(shè)命題p:函數(shù)y=loga(x+1)在(0,+∞)內(nèi)單調(diào)遞減;命題q:曲線y=x2+(2a-3)x+1與x軸交于不同的兩點(diǎn).若p或q為真,p且q為假,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線: 與橢圓: 在第一象限的交點(diǎn)為, 為坐標(biāo)原點(diǎn), 為橢圓的右頂點(diǎn), 的面積為.
(Ⅰ)求拋物線的方程;
(Ⅱ)過(guò)點(diǎn)作直線交于、 兩點(diǎn),射線、分別交于、兩點(diǎn),記和的面積分別為和,問是否存在直線,使得?若存在,求出直線的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列各組函數(shù)中,表示同一函數(shù)的是( )
A.
與g(x)=x﹣1
B.f(x)=2|x|與
C.
與
D.
與
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】解答
(1)已知全集U={x|﹣5≤x≤10,x∈Z},集合M={x|0≤x≤7,x∈Z},N={x|﹣2≤x<4,x∈Z},求(UN)∩M(分別用描述法和列舉法表示結(jié)果)
(2)已知全集U=A∪B={0,1,2,3,4,5,6,7,8,9,10},若集合A∩UB={2,4,6,8},求集合B;
(3)已知集合P={x|ax2+2ax+1=0,a∈R,x∈R},當(dāng)集合P只有一個(gè)元素時(shí),求實(shí)數(shù)a的值,并求出這個(gè)元素.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,正方形與直角梯形所在平面互相垂直, , , .
(I)求證: 平面.
(II)求證: 平面.
(III)求四面體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】等腰直角三角形ABC的直角頂點(diǎn)A在x軸的正半軸上,B在y軸的正半軸上,C在第一象限,設(shè)∠BAO=θ(O為坐標(biāo)原點(diǎn)),AB=AC=2,當(dāng)OC的長(zhǎng)取得最大值時(shí),tanθ的值為( )
A.
B.﹣1+
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= sin2x+2cos2x+m(0≤x≤ ).
(1)若函數(shù)f(x)的最大值為6,求常數(shù)m的值;
(2)若函數(shù)f(x)有兩個(gè)零點(diǎn)x1和x2 , 求m的取值范圍,并求x1和x2的值;
(3)在(1)的條件下,若g(x)=(t﹣1)f(x)﹣ (t≥2),討論函數(shù)g(x)的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,已知中心在原點(diǎn),離心率為的橢圓的一個(gè)焦點(diǎn)為圓: 的圓心.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)是橢圓上一點(diǎn),過(guò)作兩條斜率之積為的直線, ,當(dāng)直線, 都與圓相切時(shí),求的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com