A. | (-∞,-2+e] | B. | (-∞,-1+e] | C. | [2-e,+∞) | D. | [1-e,+∞) |
分析 求出函數(shù)的導數(shù),問題轉化為k≥$\frac{1}{x}$-ex在(1,+∞)恒成立,令g(x)=$\frac{1}{x}$-ex,(x>1),求出k的范圍即可.
解答 解:f′(x)=ex+k-$\frac{1}{x}$,
若函數(shù)f(x)在區(qū)間(1,+∞)單調遞增,
則k≥$\frac{1}{x}$-ex在(1,+∞)恒成立,
令g(x)=$\frac{1}{x}$-ex,(x>1),
g′(x)=-$\frac{1}{{x}^{2}}$-ex<0,
g(x)在(1,+∞)遞減,
∴g(x)<g(1)=1-e,
∴k≥1-e,
故選:D.
點評 本題考查了函數(shù)的單調性、最值問題,考查導數(shù)的應用,是一道基礎題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | -2018 | B. | -2019 | C. | 2019 | D. | 2018 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,1) | B. | (-∞,1] | C. | $(-∞,\frac{3}{2})$ | D. | $(-∞,\frac{3}{2}]$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | Sn=3-$\frac{n+1}{{2}^{n}}$-$\frac{1}{{2}^{n-1}}$ | B. | Sn=3-$\frac{n+1}{{2}^{n}}$-1-$\frac{1}{{2}^{n-2}}$ | ||
C. | Sn=3-$\frac{n+1}{{2}^{n}}$-$\frac{1}{{2}^{n-2}}$ | D. | Sn=3-n2n--$\frac{1}{{2}^{n-2}}$ |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com