6.已知三棱錐S-ABC的所有頂點都在球O的球面上,△ABC是邊長為1的正三角形,SC為球O的直徑,且SC=2,則此棱錐的體積為( 。
A.$\frac{{\sqrt{2}}}{6}$B.$\frac{{\sqrt{3}}}{6}$C.$\frac{{\sqrt{2}}}{3}$D.$\frac{{\sqrt{2}}}{2}$

分析 根據(jù)題意作出圖形,利用截面圓的性質(zhì)即可求出OO1,進而求出底面ABC上的高SD,即可計算出三棱錐的體積.

解答 解:根據(jù)題意作出圖形:
設(shè)球心為O,過ABC三點的小圓的圓心為O1,則OO1⊥平面ABC,
延長CO1交球于點D,則SD⊥平面ABC.
∵CO1=$\frac{2}{3}×\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{3}$,
∴OO1=$\frac{\sqrt{6}}{3}$,
∴高SD=2OO1=$\frac{2\sqrt{6}}{3}$,
∵△ABC是邊長為1的正三角形,
∴S△ABC=$\frac{\sqrt{3}}{4}$,
∴V=$\frac{1}{3}$×$\frac{{\sqrt{3}}}{4}$×$\frac{{2\sqrt{6}}}{3}$=$\frac{{\sqrt{2}}}{6}$,
故選:A.

點評 本題考查三棱錐的體積,考查學(xué)生的計算能力,求出點O到平面ABC的距離,進而求出點S到平面ABC的距離是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)$f(x)={e^x}-\frac{1}{2}{x^2}-x,x≥0$.
(Ⅰ)求f(x)的最小值;
(Ⅱ)若f(x)≥ax+1恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.(1)計算:cos4$\frac{π}{8}$-cos4$\frac{3π}{8}$-cos4$\frac{5π}{8}$-cos4$\frac{7π}{8}$的值.
(2)化簡:$\frac{sin25°-cos15°cos80°}{sin65°+sin15°sin10°}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)函數(shù)f(x)=(x+a)lnx,已知曲線y=f(x)在點(1,f(1))處的切線與直線2x+y-3=0平行,則a的值為( 。
A.3B.-3C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.求z=$\frac{2}{{(1+i{)^2}}}$的值為(  )
A.-iB.iC.$\frac{i}{2}$D.$-\frac{i}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知定義在R上的偶函數(shù)f(x)在[0,+∞)上遞減,若不等式f(-ax+lnx+1)+f(ax-lnx-1)≥2f(1)對x∈[1,3]恒成立,則實數(shù)a的取值范圍是( 。
A.[2,e]B.[$\frac{1}{e}$,+∞)C.[$\frac{1}{e}$,e]D.[$\frac{1}{e}$,$\frac{2+ln3}{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)向量$\vec a$=(-l,2),$\vec b$=(2,1),則$\vec a$-$\vec b$與$\vec b$的夾角為(  )
A.45°B.60°C.120°D.135°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知AD是△ABC的中線,$\overrightarrow{AD}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC\;}$(λ,μ∈R),∠A=120°,$\overrightarrow{AB}$•$\overrightarrow{AC}$=-2,則|${\overrightarrow{AD}}$|的最小值是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.實數(shù)m為何值時,關(guān)于x的方程x2-(m-1)x-2=0有實數(shù)解?

查看答案和解析>>

同步練習(xí)冊答案