13.設(shè)F(0,1),點P在x軸上,點Q在y軸上,$\overrightarrow{QN}$=2$\overrightarrow{QP}$,$\overrightarrow{QP}$⊥$\overrightarrow{PF}$,當(dāng)點P在x軸上運動時,點N的軌跡為曲線C.
(1)求曲線C的方程;
(2)過點F的直線l交曲線C于A,B兩點,且曲線C在A,B兩點處的切線相交于點M,若△MAB的三邊成等差數(shù)列,求此時點M到直線AB的距離.

分析 (1)設(shè)N(x,y),則P($\frac{x}{2}$,0),Q(0,-y),由此根據(jù)題設(shè)條件能求出曲線C的方程.
(2)設(shè)A(x1,y1),B(x2,y2),直線l:y=kx+1,與橢圓聯(lián)立,得x2-4kx-4=0,由此利用韋達(dá)定理、點到直線距離公式、等差數(shù)列、勾股定理、橢圓性質(zhì),結(jié)合已知條件能求出點M到直線AB的距離.

解答 解:(1)設(shè)N(x,y),
∵點P在x軸上,點Q在y軸上,$\overrightarrow{QN}$=2$\overrightarrow{QP}$,$\overrightarrow{QP}$⊥$\overrightarrow{PF}$,
∴P($\frac{x}{2}$,0),Q(0,-y),
∵F(0,1),∴$\overrightarrow{QP}$=($\frac{x}{2}$,y),$\overrightarrow{PF}$=(-$\frac{x}{2}$,1),
∵$\overrightarrow{QP}$⊥$\overrightarrow{PF}$,∴$\overrightarrow{QP}•\overrightarrow{PF}$=-$\frac{{x}^{2}}{4}$+y=0,
∴曲線C的方程為x2=4y.
(2)設(shè)A(x1,y1),B(x2,y2),直線l:y=kx+1,
聯(lián)立$\left\{\begin{array}{l}{y=kx+1}\\{{x}^{2}=4y}\end{array}\right.$,得x2-4kx-4=0,
則x1+x2=4k,x1x2=-4,
直線MA的方程為$y=\frac{{x}_{1}}{2}x-\frac{{{x}_{1}}^{2}}{4}$,直線MB的方程為$y=\frac{{x}_{2}}{2}x-\frac{{{x}_{2}}^{2}}{4}$,
聯(lián)立$\left\{\begin{array}{l}{y=\frac{{x}_{1}}{2}x-\frac{{{x}_{1}}^{2}}{4}}\\{y=\frac{{x}_{2}}{2}x-\frac{{{x}_{2}}^{2}}{4}}\end{array}\right.$,得M(2k,-1),
∴點M到直線AB的距離d=2$\sqrt{{k}^{2}+1}$,
∵kMA•kMB=$\frac{{x}_{1}}{2}•\frac{{x}_{2}}{2}$=-1,∴MA⊥MB,
∴|MA|2+|MB|2=|AB|2,①
∵△MAB的三邊成等差數(shù)列,不妨設(shè)|MA|<|MB|,
∴|MA|+|AB|=2|MB|,②
由①②,得|MA|:|MB|:|AB|=3:4:5,
∵S△MAB=$\frac{1}{2}|MA|•|MB|$=$\frac{1}{2}$|AB|•d,∴$\fracfq2j872{|AB|}$=$\frac{12}{25}$,
又|AB|=4(k2+1),
∵$\fracwiikpsx{|AB|}$=$\frac{1}{2\sqrt{{k}^{2}+1}}$=$\frac{12}{25}$,∴$\sqrt{{k}^{2}+1}$=$\frac{25}{24}$,
∴點M到直線AB的距離d=2$\sqrt{{k}^{2}+1}$=$\frac{25}{12}$.

點評 本題考查曲線方程的求法,考查點到直線的距離的求法,是中檔題,解題時要認(rèn)真審題,注意韋達(dá)定理、點到直線距離公式、等差數(shù)列、勾股定理、橢圓性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知sin$\frac{α}{2}$=-$\frac{3}{5}$,cos$\frac{α}{2}$=-$\frac{4}{5}$,則角α是(  )
A.第一象限角B.第二象限角C.第三象限角D.第四象限角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓Г:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點與短軸兩端點構(gòu)成一個面積為2的等腰直角三角形,O為坐標(biāo)原點;
(1)求橢圓Г的方程;
(2)設(shè)點A在橢圓Г上,點B在直線y=2上,且OA⊥OB,求證:$\frac{1}{O{A}^{2}}+\frac{1}{O{B}^{2}}$為定值;
(3)設(shè)點C在橢圓Г上運動,OC⊥OD,且點O到直線CD的距離為常數(shù)$\sqrt{3}$,求動點D的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知ω>0,函數(shù)f(x)=sinωx+$\sqrt{3}$cosωx在(0,$\frac{π}{2}}$)上單調(diào)遞增,則ω的取值范圍是( 。
A.0<ω≤$\frac{1}{3}$B.$\frac{1}{4}$<ω≤$\frac{1}{3}$C.0<ω≤$\frac{1}{4}$D.$\frac{1}{12}$<ω≤$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>0,b>0)的右焦點為F(1,0),左頂點到點F的距離為$\sqrt{2}$+1.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)過點F,斜率為k的直線l與橢圓E交于A,B兩點,且與短軸交于點C,若△OAF與△OBC的面積相等,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知橢圓E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>c)的離心率為$\frac{{\sqrt{2}}}{2}$,過焦點且垂直于x軸的直線被橢圓E截得的線段長為2.
(1)求橢圓E的方程;
(2)直線y=kx+1與橢圓E交于A,B兩點,以AB為直徑的圓與y軸正半軸交于點C.是否存在實數(shù)k,使得y軸恰好平分∠ACB?若存在,求出k的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下面的幾種推理過程是演繹推理的是( 。
A.兩條直線平行,同旁內(nèi)角互補,如果∠A和∠B是兩條平行直線的同旁內(nèi)角,則∠A+∠B=180°
B.由平面三角形的性質(zhì),推測空間四面體性質(zhì)
C.某校高三共有10個班,1班有51人,2班有53人,3班有52人,由此推測各班都超過50人
D.在數(shù)列{an}中,a1=1,an+1=$\frac{{a}_{n}}{1+{a}_{n}}$(n=1,2,3,…),由此歸納出{an}的通項公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.用反證法證明命題:“設(shè)實數(shù)a,b,c滿足a+b+c=3,則a,b,c中至少有一個數(shù)不小于1”時,第一步應(yīng)寫:假設(shè)a,b,c都小于2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,A地到機場共有兩條路徑L1和L2,L1雖然路程較短,但經(jīng)過部分城區(qū),容易堵車;L2道路較為暢通,但繞行距離長.為了給A地的人去機場提供幫助,現(xiàn)隨機抽取1000位從A地到達(dá)機場的人進(jìn)行調(diào)查,調(diào)查結(jié)果如表:
所用時間(分鐘)10~2020~3030~4040~5050~60
選擇L1的人數(shù)60120180120120
選擇L2的人數(shù)04016016040
(Ⅰ)試估計40分鐘內(nèi)不能從A地趕到機場的概率;
(Ⅱ)現(xiàn)甲、乙兩人分別有40分鐘和50分鐘時間用于趕往機場,為了盡最大可能在允許的時間內(nèi)趕到機場,試通過計算說明,他們應(yīng)如何選擇各自的路徑.

查看答案和解析>>

同步練習(xí)冊答案