18.△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,B=$\frac{π}{6}$,C=$\frac{π}{4}$,S△ABC=$\frac{\sqrt{3}+1}{2}$,則c=( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{6}$+$\sqrt{2}$

分析 由已知及三角形面積公式可得ac=2($\sqrt{3}+1$),又由正弦定理可解得a=$\frac{1+\sqrt{3}}{2}$c,聯(lián)立即可解得c的值.

解答 解:∵B=$\frac{π}{6}$,C=$\frac{π}{4}$,S△ABC=$\frac{\sqrt{3}+1}{2}$=$\frac{1}{2}$acsin$\frac{π}{6}$=$\frac{1}{4}$ac,可得:ac=2($\sqrt{3}+1$),①
又∵由正弦定理可得:$\frac{c}{sin\frac{π}{4}}$=$\frac{a}{sin(π-\frac{π}{6}-\frac{π}{4})}$,可解得:a=$\frac{1+\sqrt{3}}{2}$c,②
∴由①②可得:c=2.
故選:C.

點評 本題主要考查了三角形面積公式,正弦定理在解三角形中的應用,考查了計算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

8.設(shè)集合M={x|x2+x≤0},N={x|2x>$\frac{1}{4}$},則M∪N等于( 。
A.[-1,0]B.(-1,0)C.(-2,+∞)D.(-2,0]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知F1、F2是橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右焦點,P是橢圓上任一點,過一焦點引∠F1PF2的外角平分線的垂線,垂足為A.若|OA|=2b,則該橢圓的離心率e為$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.若向量$\overrightarrow{a}$,$\overrightarrow$滿足:$\overrightarrow{a}$=(-$\sqrt{3}$,1),($\overrightarrow{a}$+2$\overrightarrow$)⊥$\overrightarrow{a}$,($\overrightarrow{a}$+$\overrightarrow$)⊥$\overrightarrow$,則|$\overrightarrow$|=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.有紅、黃、藍三種顏色,大小相同的小球各三個,在每種顏色的3個小球上分別標上號碼1、2、3,現(xiàn)任取出3個,它們的顏色與號碼均不相同的概率是(  )
A.$\frac{1}{14}$B.$\frac{9}{28}$C.$\frac{3}{28}$D.$\frac{3}{56}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.一個袋子里裝有6個球,其中紅球4個,編號均為1,白球2個,編號均為2,3.(假設(shè)取到任何一個球的可能性相同)
(Ⅰ)現(xiàn)依次不放回地任取兩個球,求在第一個球是紅球的情況下,第二個球也是紅球的概率;
(Ⅱ)現(xiàn)甲從袋中任取兩個球,記其兩球編號之和為m,待甲將球放回袋后,乙再從袋中任取兩個球,記其兩球編號之和為n,求m<n的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.己知等差數(shù)列{an},設(shè)其前n項和為Sn,滿足S5=20,S8=-4.
(1)求an與Sn;
(2)設(shè)cn=anan+1an+2,Tn是數(shù)列{cn}的前n項和,若對任意n∈N+,Tn≤$\frac{m-466}{3}$恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.如圖是一個算法的流程圖,則輸出i的值為4.
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.設(shè)向量$\overrightarrow{AB}=(1,4)$,$\overrightarrow{BC}=(m,-1)$,且$\overrightarrow{AB}⊥\overrightarrow{AC}$,則實數(shù)m的值為( 。
A.-10B.-13C.-7D.4

查看答案和解析>>

同步練習冊答案