8.已知方程$\frac{{x}^{2}}{5-2m}$+$\frac{{y}^{2}}{m+1}$=1表示橢圓,求實數(shù)m的取值范圍.

分析 直接利用橢圓的性質,列出不等式組求解即可.

解答 解:方程$\frac{{x}^{2}}{5-2m}$+$\frac{{y}^{2}}{m+1}$=1表示橢圓,
可得:$\left\{\begin{array}{l}{5-2m>0}\\{m+1>0}\\{5-2m≠m+1}\end{array}\right.$,
解得:m∈(-1,$\frac{4}{3}$)∪($\frac{4}{3}$,$\frac{5}{2}$).

點評 本題考查與的簡單性質的應用,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

18.已知拋物線C的標準方程為y2=2px(p>0),M為拋物線C上一動點,A(a,0)(a≠0)為其對稱軸上一點,直線MA與拋物線C的另一個交點為N.當A為拋物線C的焦點且直線MA與其對稱軸垂直時,△MON的面積為18.
(1)求拋物線C的標準方程;
(2)記t=$\frac{1}{{|{AM}|}}+\frac{1}{{|{AN}|}}$,若t值與M點位置無關,則稱此時的點A為“穩(wěn)定點”,試求出所有“穩(wěn)定點”,若沒有,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.用4種不同的顏色涂下列區(qū)域,要求每個區(qū)域只能用一種顏色,且相鄰的區(qū)域不能同色,那么不同的涂法種數(shù)為(  )
A.84B.72C.60D.120

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.若實數(shù)x,y,z滿足y+z=3x2-4x+6,y-z=x2-4x+4,試確定x,y,z的大小關系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知sinθ+cosθ=$\frac{1}{5}$,且$\frac{π}{2}$<θ<$\frac{3π}{4}$,則cos2θ的值是-$\frac{7}{25}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知函數(shù)f(x)是定義在R上的奇函數(shù),且當x>0時,f(x)=($\frac{1}{2}$)x,則f(log2$\frac{1}{3}$)=-$\frac{1}{3}$,函數(shù)f(x)的值域為(-1,1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,且點(1,$\frac{\sqrt{3}}{2}$)在該橢圓上.
(1)求橢圓的方程;
(2)不垂直坐標軸的直線l與橢圓C交于A,B兩點,以AB為直徑的圓過原點,且線段AB的垂直平分線交y軸于點P(0,-$\frac{3}{2}$),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知動點P到y(tǒng)軸的距離的3倍等于它到點A(1,3)的距離的平方,求動點P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知f(n)=ncos$\frac{2nπ}{3}$,則f(1)+f(2)+f(3)+…+f(2016)=1008.

查看答案和解析>>

同步練習冊答案