15.如圖,△DBC是邊長為2的等邊三角形,且AD⊥平面BCD,E是BC的中點(diǎn),求證:BC⊥面ADE.

分析 由等邊三角形性質(zhì)得出BC⊥DE,由AD⊥平面BCD得出AD⊥BC,故而BC⊥平面ADE.

解答 證明:∵△BCD是等邊三角形,E是BC的中點(diǎn),
∴BC⊥DE.
∵AD⊥平面BCD,BC?平面BCD,
∴BC⊥AD,
又AD?平面ADE,DE?平面ADE,AD∩DE=D,
∴BC⊥平面ADE.

點(diǎn)評 本題考查了線面垂直的性質(zhì)與判定,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.一個盒子里裝有5張卡片,其中有紅色卡片3張,編號分別為1,2,3;白色卡片2張,編號分別為2,3.
從盒子中任取2張卡片(假設(shè)取到任何一張卡片的可能性相同).
(1)求取出的2張卡片中,含有編號為3的卡片的概率.
(2)在取出的2張卡片中,紅色卡片編號的最大值設(shè)為X,求X=3的概率.
(3)求取出的2張卡片編號差的絕對值為1的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)y=2tan(x-$\frac{π}{6}$),x∈[-$\frac{π}{6}$,$\frac{5π}{12}$]的值域是( 。
A.[-2,2]B.[-1,1]C.[-2$\sqrt{3}$,2]D.[-$\sqrt{3}$,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)y=f(x),x∈D,若存在常數(shù)C,對?x1∈D,?唯一的x2∈D,使得$\sqrt{f({x}_{1})f({x}_{2})}$=C,則稱常數(shù)C是函數(shù)f(x)在D上的“倍幾何平均數(shù)”.已知函數(shù)f(x)=2-x,x∈[1,3],則f(x)在[1,3]上的“倍幾何平均數(shù)”是$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知正項(xiàng)等差數(shù)列{an}滿足a1+a2016=2,則$\frac{1}{a_2}$+$\frac{1}{{{a_{2015}}}}$的最小值為( 。
A.1B.2C.2014D.2015

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.設(shè)A,B是兩個互斥事件,且P(A∪B)=1,P(A)=$\frac{1}{4}$,P(B)=$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.?dāng)?shù)列{an}中,a1=1,當(dāng)n≥2時,其前n項(xiàng)的和Sn滿足an=$\frac{{S}_{n}^{2}}{{S}_{n}-1}$.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log2$\frac{{S}_{n}}{{S}_{n+2}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知全集U={1,2,3,4,5},S?∪,T?U,若S∩T={2},(∁US)∩T={4},(∁US)∩(∁UT)={1,5},則有( 。
A.3∈S∩TB.3∉S,但3∈TC.3∈S∩(∁T)D.3∈(∁S)∩(∁T)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=x3-3x.
(Ⅰ)求曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程;
(Ⅱ)求函數(shù)f(x)在[-1,m](m>-1)上的最小值.

查看答案和解析>>

同步練習(xí)冊答案