10.已知函數(shù)f(x)=ax-b的圖象如圖所示,則函數(shù)g(x)=ax+b的圖象可能是( 。
A.B.C.D.

分析 根據(jù)指數(shù)函數(shù)圖象遞減可知0<a<1,再有平移可知向右平移了小于1個(gè)單位,得出0<b<1,可得出選項(xiàng).

解答 解:根據(jù)指數(shù)函數(shù)圖象和平移可知:
0<a<1,0<b<1,
故一次函數(shù)g(x)=ax+b的圖象為A.
故選:A.

點(diǎn)評(píng) 考查了指數(shù)函數(shù),圖象的平移和一次函數(shù)的圖象.屬于基礎(chǔ)題型,應(yīng)熟練掌握.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖,拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)為F,過拋物線上一點(diǎn)A(3,y)作準(zhǔn)線l作垂線,垂直為B,若△ABF為等邊三角形,則拋物線的標(biāo)準(zhǔn)方程是(  )
A.y2=$\frac{1}{2}$xB.y2=xC.y2=2xD.y2=4x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知集合A={x|x2-x-2≤0},集合B={x|0<x≤3},則A∩B=( 。
A.(0,1]B.(0,2]C.(2,3)D.[2,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.某次數(shù)學(xué)小測(cè)驗(yàn)中(滿分100分),某班50名學(xué)生得分如下面的頻率分布直方圖所示:
(1)求該班本次小測(cè)驗(yàn)數(shù)學(xué)成績(jī)的平均分和中位數(shù);
(2)已知數(shù)學(xué)老師采用分層抽樣的方法在70分以上(含70分)的同學(xué)中抽取9人組成一個(gè)學(xué)習(xí)小組,再從9人中選出3人擔(dān)任組長(zhǎng),求組長(zhǎng)中得分在90分以上(含90分)的人數(shù)X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列結(jié)論錯(cuò)誤的是( 。
A.若“p∨q”為假命題,則p,q均為假命題
B.“a>b”是“ac2>bc2”的充分不必要條件
C.命題:“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0”
D.命題:“若x2-3x+2=0,則x=2”的逆否命題為“若x≠2,則x2-3x+2≠0”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在數(shù)列{an}中,a1=a(a∈R),an+1=$\frac{2{{a}_{n}}^{2}}{4{a}_{n}-1}$(n∈N*),記數(shù)列{an}的前n項(xiàng)和是Sn
(Ⅰ)若對(duì)任意的n∈N*,都有an+1>$\frac{1}{2}$,求實(shí)數(shù)a的取值范圍;
(Ⅱ)若a=1,求證:Sn<$\frac{{n}^{2}}{4}$+1(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)x1,x2,x3,x4∈(0,$\frac{π}{2}$),則( 。
A.在這四個(gè)數(shù)中至少存在兩個(gè)數(shù)x,y,滿足sin(x-y)>$\frac{1}{2}$
B.在這四個(gè)數(shù)中至少存在兩個(gè)數(shù)x,y,滿足cos(x-y)≥$\frac{{\sqrt{3}}}{2}$
C.在四個(gè)數(shù)中至多存在兩個(gè)數(shù)x,y,滿足tan(x-y)<$\frac{{\sqrt{3}}}{3}$
D.在這四個(gè)數(shù)中至多存在兩個(gè)數(shù)x,y,滿足sin(x-y)≥$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知向量$\overrightarrow{a}$=(x2,x+1),$\overrightarrow$=(1-x,t),若函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$在區(qū)間(-1,1)上是增函數(shù),則t的取值范圍為( 。
A.(1,5)B.(-$\frac{1}{3}$,5)C.(-∞,5]D.[5,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知a>0,b>0,則“ab>4”是“a+b>4”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案