8.已知cos(α-$\frac{π}{6}}$)+sinα=$\frac{4}{5}\sqrt{3}$,則sin(α+$\frac{7π}{6}}$)的值是(  )
A.$\frac{4}{5}$B.-$\frac{4}{5}$C.-$\frac{3}{5}$D.$\frac{3}{5}$

分析 利用兩角和的正弦公式、誘導(dǎo)公式求得sin(α+$\frac{7π}{6}}$)的值.

解答 解:∵cos(α-$\frac{π}{6}}$)+sinα=$\frac{\sqrt{3}}{2}$cosα+$\frac{3}{2}$sinα=$\sqrt{3}$sin(α+$\frac{π}{6}$)=$\frac{4}{5}\sqrt{3}$,
∴sin(α+$\frac{π}{6}$)=$\frac{4}{5}$,
則sin(α+$\frac{7π}{6}}$)=-sin(α+$\frac{π}{6}$)=-$\frac{4}{5}$,
故選:B.

點評 本題主要考查兩角和的正弦公式、誘導(dǎo)公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.如圖,網(wǎng)格上小正方形的邊長為1,粗線畫出的是一個三棱錐的三視圖,該三棱錐的外接球的表面積記為S1,俯視圖繞底邊AB所在直線旋轉(zhuǎn)一周形成的幾何體的表面積記為S2,則S1:S2=( 。
A.4$\sqrt{2}$B.2$\sqrt{2}$C.4D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知函數(shù)f(x)=x2-mx+1-m2,若|f(x)|在[0,1]上單調(diào)遞增,則實數(shù)m的取值范圍-1≤m≤0或m≥2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知曲線C上任一點P到點F(1,0)的距離比它到直線l:x=-2的距離少1.
(1)求曲線C的方程;
(2)過點Q(1,2)作兩條傾斜角互補(bǔ)的直線與曲線C分別交于點A、B,試問:直線AB的斜率是否為定值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.甲、乙兩班進(jìn)行消防安全知識競賽,每班出3人組成甲乙兩支代表隊,首輪比賽每人一道必答題,答對則為本隊得1分,答錯不答都得0分,已知甲隊3人每人答對的概率分別為$\frac{3}{4},\frac{2}{3},\frac{1}{2}$,乙隊每人答對的概率都是$\frac{2}{3}$.設(shè)每人回答正確與否相互之間沒有影響,用ξ表示甲隊總得分.
(Ⅰ)求ξ=2概率;
(Ⅱ)求在甲隊和乙隊得分之和為4的條件下,甲隊比乙隊得分高的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)p:l<x<2,q:2x>1,則P是q成立的( 。
A.必要不充分條件B.充分不必要條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若a<b<0,c∈R,則下列不等式中正確的是( 。
A.$\frac{1}{a}$>$\frac{1}$B.$\frac{1}{a-b}$>$\frac{1}{a}$C.ac>bcD.a2<b2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.命題“?x∈R,lg(x2+1)-x>0“的否定為?x∈R,lg(x2+1)-x≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下面使用類比推理正確的是( 。
A.”loga(x•y)=logax+logay“類比推出“sin(x•y)=sinx+siny“
B.“(a+b)•c=ac+bc”類比推出“(a•b)•c=ac•bc”
C.“(a+b)•c=ac+bc”類比推出“$\frac{a+b}{c}$=$\frac{a}{c}+\frac{c}$(c≠0)“
D.“(a•b)•c=a•(b•c)“類比推出“($\overrightarrow{a}$•$\overrightarrow$)•$\overrightarrow{c}$=$\overrightarrow{a}$•($\overrightarrow$•$\overrightarrow{c}$)“

查看答案和解析>>

同步練習(xí)冊答案