18.已知tanα=2且α為銳角,則cos2α=-$\frac{3}{5}$.

分析 由條件利用同角三角函數(shù)的基本關(guān)系,二倍角的余弦公式,求得cos2α的值.

解答 解:∵tanα=2且α為銳角,則cos2α=$\frac{{cos}^{2}α{-sin}^{2}α}{{cos}^{2}α{+sin}^{2}α}$=$\frac{1{-tan}^{2}α}{1{+tan}^{2}α}$=$\frac{1-4}{1+4}$=-$\frac{3}{5}$,
故答案為:-$\frac{3}{5}$.

點評 本題主要考查同角三角函數(shù)的基本關(guān)系,二倍角的余弦公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知A,B是球O的球面上兩點,∠AOB=60°,C為該球面上的動點,若三棱錐O-ABC體積的最大值為18$\sqrt{3}$,則球O的體積為288π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.某單位舉行聯(lián)歡活動,每名職工均有一次抽獎機會,每次抽獎都是從甲箱和乙箱中各隨機摸取1個球,已知甲箱中裝有3個紅球,5個綠球,乙箱中裝有3個紅球,3個綠球,2個黃球.在摸出的2個球中,若都是紅球,則獲得一等獎;若都是綠球,則獲得二等獎;若只有1個紅球,則獲得三等獎;若1個綠球和1個黃球,則不獲獎.
(Ⅰ)求每名職工獲獎的概率;
(Ⅱ)設(shè)X為前3名職工抽獎中獲得一等獎和二等獎的次數(shù)之和,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,且a=bcosC-$\frac{\sqrt{3}}{3}$csinB.
(Ⅰ)求B;
(Ⅱ)若點D為邊AC的中點,AB=2,BC=1,求BD的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.邊長為2$\sqrt{3}$的正三角形ABC,其內(nèi)切圓與BC切于點E,F(xiàn)為內(nèi)切圓上任意一點,則$\overrightarrow{AE}$•$\overrightarrow{AF}$的取值范圍為[3,9].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖:在三棱柱ABC-A1B1C1中,底面是邊長為2$\sqrt{3}$的正三角形,點A1在底面ABC上的射影O恰是BC中點.
(Ⅰ)求證:AA1⊥BC;
(Ⅱ)當(dāng)側(cè)棱AA1和底面成45°角時,求V${\;}_{A-B{B}_{1}{C}_{1}C}$;
(Ⅲ)若D為棱AA1上一點,當(dāng)$\frac{{A}_{1}D}{DA}$為何值時,BD⊥A1C1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.正三棱柱ABC-A1B1C1(側(cè)棱垂直底面,底面為正三角形的棱柱)的底面邊長為2,側(cè)棱長為$\sqrt{3}$,則正三棱柱ABC-A1B1C1的體積為( 。
A.1B.$\frac{{\sqrt{3}}}{2}$C.$\frac{3}{2}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知拋物線C:x2=8y,過點M(0,t)(t<0)可作拋物線C的兩條切線,切點分別為A,B,若直線AB恰好過拋物線C的焦點,則△MAB的面積為(  )
A.2B.3C.6D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.為了解某班學(xué)生喜歡打籃球是否與性別有關(guān),對本班50人進行了問卷調(diào)查,得到如表的列聯(lián)表:
 喜歡打籃球 不喜歡打籃球 合計
 男生  5 
 女生 10  
 合計  50
已知在全部50人中隨機抽取1人抽到喜歡打籃球的學(xué)生的概率為$\frac{3}{5}$.
(1)請將上面的列聯(lián)表補充完整(不用寫計算過程);
(2)能否在犯錯誤的概率不超過0.005的前提下認(rèn)為喜歡打籃球與性別有關(guān)?請說明你的理由.
參考公式及數(shù)據(jù):K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
 P(K2≥k1 0.10 0.05 0.025 0.010 0.005 0.001
 k1 2.706 3.841 5.024 6.6335 7.87910.828

查看答案和解析>>

同步練習(xí)冊答案