分析 (1)先求導(dǎo),根據(jù)導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,即可求出在閉區(qū)間上的最值,問(wèn)題得以證明,
(2))由g(x)≤ax對(duì)任意的x∈[-$\frac{π}{2}$,0]成立,設(shè)y=ax,得到y(tǒng)min≥g(x)max,對(duì)任意的x∈[-$\frac{π}{2}$,0]成立,分類討論即可求出a的取值范圍.
解答 (1)證明:∵f(x)=sinx-x,
∴f′(x)=cosx-1≤0,在x∈[-$\frac{π}{2}$,0]上恒成立,
∴f(x)在[-$\frac{π}{2}$,0]上單調(diào)遞減,
∴f(x)≥f(0)=0-0=0,
(2)解:∵g(x)≤ax對(duì)任意的x∈[-$\frac{π}{2}$,0]成立,
設(shè)y=ax,
∴ymin≥g(x)max,對(duì)任意的x∈[-$\frac{π}{2}$,0]成立,
∵g(x)=$\frac{sinx}{{e}^{x}}$,x∈[-$\frac{π}{2}$,0],
∴g′(x)=$\frac{cosx-sinx}{{e}^{x}}$>0,在x∈[-$\frac{π}{2}$,0]上恒成立,
∴g(x)在[-$\frac{π}{2}$,0]上單調(diào)遞增,
∴g(x)max=g(0)=0,
當(dāng)a>0時(shí),函數(shù)y=ax為增函數(shù),
∴ymin=-$\frac{π}{2}$a,
∴-$\frac{π}{2}$a≥0,解得a≤0(舍去),
當(dāng)a<0時(shí),函數(shù)y=ax為減函數(shù),
∴ymin=0,
∴ymin≥g(x)max,恒成立,
當(dāng)a=0時(shí),函數(shù)y=0,對(duì)于任意x∈[-$\frac{π}{2}$,0],0≥g(x)max,恒成立,
綜上所述a的取值范圍為(-∞,0]
點(diǎn)評(píng) 本題考查了導(dǎo)數(shù)和函數(shù)的單調(diào)性和最值的關(guān)關(guān)系,以及不等式很成立的問(wèn)題,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | $\frac{3}{2}$ | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
x | 2 | 3 | 4 |
y | 5 | 4 | 6 |
A. | -2 | B. | 2 | C. | -0.5 | D. | 0.5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{\sqrt{2}}{2}$ | B. | $\frac{1}{2}$ | C. | $\frac{\sqrt{2}}{4}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0個(gè) | B. | 1個(gè) | C. | 2個(gè) | D. | 3個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {-1,0,1} | B. | {0,1,2} | C. | {0,1} | D. | {1,2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 13 | B. | 3 | C. | 52 | D. | 53 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com