6.已知各項不為0的等差數(shù)列{an},滿足${a_3}-{a_7}^2+{a_{11}}=0$,前13項和S13=26.

分析 由根據(jù)等差數(shù)列的性質(zhì)化簡已知條件,得到關(guān)于a7的方程,求出方程的解得到a7的值,由此能求出S13

解答 解:解:根據(jù)等差數(shù)列的性質(zhì)得:a3+a11=2a7,
∵a3-a72+a11=0(已知),
∴2a7-a72=0,
解得a7=2,或a7=0(舍去),
∴S13=13a7=26,
故答案是:26.

點評 本題考查了等差數(shù)列的通項公式的性質(zhì)及其前n項和公式,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

6.log510-log52=( 。
A.8B.0C.1D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.${∫}_{\frac{π}{2}}^{π}$cosxdx=( 。
A.1B.0C.-1D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.設(shè)等差數(shù)列{an}的公差為d,且a1,d∈N*.若設(shè)M1是從a1開始的前t1項數(shù)列的和,即M1=a1+…+at1(1≤t1,t1∈N*),${M_2}={a_{{t_1}+1}}+{a_{{t_1}+2}}+…+{a_{t_2}}(1<{t_2}∈{N^*})$,如此下去,其中數(shù)列{Mi}是從第ti-1+1(t0=0)開始到第ti(1≤ti)項為止的數(shù)列的和,即${M_i}={a_{{t_{i-1}}+1}}+…+{a_{t_i}}(1≤{t_i},{t_i}∈{N^*})$.
(1)若數(shù)列an=n(1≤n≤13,n∈N*),試找出一組滿足條件的M1,M2,M3,使得:M22=M1M3;
(2)試證明對于數(shù)列an=n(n∈N*),一定可通過適當?shù)膭澐,使所得的?shù)列{Mn}中的各數(shù)都為平方數(shù);
(3)若等差數(shù)列{an}中a1=1,d=2.試探索該數(shù)列中是否存在無窮整數(shù)數(shù)列{tn},(1≤t1<t2<t3<…<tn),n∈N*,使得{Mn}為等比數(shù)列,如存在,就求出數(shù)列{Mn};如不存在,則說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.二次函數(shù)f(x)滿足f(x+1)-f(x)=2x,且f(0)=1,
(1)求f(x)的解析式;
(2)方程f(x)=$\frac{1}{2}$x+1+k 在(-1,1)上有實根,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.${(\frac{7}{{\sqrt{x}}}-\root{3}{x})^n}$的展開式中,各項系數(shù)的和與二項式系數(shù)的和之比為729,則(x-1)n的展開式中系數(shù)最小項的系數(shù)等于-20.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.用數(shù)學歸納法證明:$1+2+3+…+n=\frac{1}{2}\;n\;(n+1)$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.i是虛數(shù)單位,在復(fù)平面上復(fù)數(shù)$\frac{2-i}{1+i}$對應(yīng)的點到原點的距離是( 。
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{5}}{2}$C.$\frac{\sqrt{6}}{2}$D.$\frac{\sqrt{10}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.若f(x)=$\left\{\begin{array}{l}\frac{a}{x},x≥1\\-x+3a,x<1\end{array}$是R上的單調(diào)減函數(shù),則實數(shù)a的取值范圍為[$\frac{1}{2}$,+∞).

查看答案和解析>>

同步練習冊答案