A. | (-5,0) | B. | (-4,0) | C. | (-∞,0) | D. | {-4} |
分析 先判斷函數(shù)g(x)的取值范圍,然后根據(jù)f(x)<0和g(x)<0至少有一個成立.則m的取值范圍即可求出.
解答 解:∵g(x)=2x-4,當(dāng)x≥2時,g(x)≥0,
又∵?x∈R,f(x)<0或g(x)<0,
∴f(x)=m(x-m)(x+m+3)<0在x≥2時恒成立,
即m(x-m)(x+m+3)<0在x≥2時恒成立,
則二次函數(shù)y=m(x-m)(x+m+3)圖象開口只能向下,且與x軸交點都在(2,0)的左側(cè),
∴$\left\{\begin{array}{l}{m<0}\\{-m-3<2}\\{m<2}\end{array}\right.$,
解得-5<m<0,
∴實數(shù)m的取值范圍是:(-5,0).
故選:A.
點評 本題主要考查指數(shù)函數(shù)和二次函數(shù)的圖象和性質(zhì),根據(jù)條件確定f(x)=m(x-m)(x+m+3)<0在x≥2時恒成立是解決本題的關(guān)鍵,綜合性較強(qiáng),難度較大.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3020+$\sqrt{3}$ | B. | 3020+$\frac{\sqrt{3}-1}{2}$ | C. | $\sqrt{3}$+3018 | D. | 3018+$\frac{\sqrt{3}-1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com