10.在兩坐標(biāo)軸上截距相等且傾斜角為45°的直線( 。
A.不存在B.有且只有一條
C.有多于一條的有限條D.有無窮多條

分析 利用截距式、斜率與截距的意義即可判斷出結(jié)論.

解答 解:在兩坐標(biāo)軸上截距相等且傾斜角為45°的直線有且只有一條:y=x.
故選:B.

點(diǎn)評(píng) 本題考查了直線的截距式、斜率與截距的意義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若直線x-y-1=0和x-ky=0的交點(diǎn)在第三象限,則k的取值范圍是( 。
A.0<k<$\frac{1}{2}$B.0<k<1C.k>1D.k<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=1-$\frac{2}{{{2^x}+1}}$.
(1)判斷函數(shù)的奇偶性,并加以證明;
(2)證明:f(x)在(-∞,+∞)上是增函數(shù).
(3)若 f(2a+1)+f(4a-3)>0,求實(shí)數(shù)a的取值范圍.(提示:可以直接利用前兩小題的結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知p:?x∈R,2x>m(x2+1),q:?x0∈R,x02+2x0-m-1=0,
(1)若q是真命題,求m的范圍;
(2)若p∧(¬q)為真,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.直線l1:x-$\sqrt{3}$y+2=0與直線l2:x-y+3=0的夾角的大小是$\frac{π}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.方程tanx=$\sqrt{2}$的解集為{x|x=kπ+arctan2,k∈Z}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知一個(gè)矩形內(nèi)接于半徑為5的圓.
(1)當(dāng)矩形周長(zhǎng)最大時(shí),求其面積.
(2)當(dāng)矩形面積最大時(shí),求其周長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知$\overrightarrow{a}$=(-$\frac{2}{3}$,n+1),$\overrightarrow$=(Sn,n)且$\overrightarrow{a}$⊥$\overrightarrow$,其中Sn是數(shù)列{an}的前n項(xiàng)和$\frac{{a}_{n}}{{a}_{n+1}•{a}_{n+9}}$的最大值為$\frac{1}{48}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=e2ax(a∈R)的圖象C在點(diǎn)P(1,f(1))處切線的斜率為e,記奇函數(shù)g(x)=kx+b(k,b∈R,k≠0)的圖象為l.
(1)求實(shí)數(shù)a,b的值;
(2)當(dāng)x∈(-1,2)時(shí),圖象C恒在l的上方,求實(shí)數(shù)k的取值范圍;
(3)若圖象C與l有兩個(gè)不同的交點(diǎn)A,B,其橫坐標(biāo)分別是x1,x2,設(shè)x1<x2,求證:x1•x2<1.

查看答案和解析>>

同步練習(xí)冊(cè)答案