1.已知|$\overrightarrow{a}$|=|$\overrightarrow$|=|$\overrightarrow{c}$|=1,且滿足3$\overrightarrow{a}$$+m\overrightarrow$$+7\overrightarrow{c}$=$\overrightarrow{0}$,其中$\overrightarrow{a}$與$\overrightarrow$的夾角為60°,則實(shí)數(shù)m=5或-8.

分析 用$\overrightarrow{a},\overrightarrow$表示出$\overrightarrow{c}$,兩邊平方得到關(guān)于m的方程.

解答 解:∵3$\overrightarrow{a}$$+m\overrightarrow$$+7\overrightarrow{c}$=$\overrightarrow{0}$,∴-7$\overrightarrow{c}$=3$\overrightarrow{a}$+m$\overrightarrow$,
∴49${\overrightarrow{c}}^{2}$=9${\overrightarrow{a}}^{2}$+m2${\overrightarrow}^{2}$+6m$\overrightarrow{a}•\overrightarrow$,
∵|$\overrightarrow{a}$|=|$\overrightarrow$|=|$\overrightarrow{c}$|=1,$\overrightarrow{a}•\overrightarrow$=cos60°=$\frac{1}{2}$.
∴49=9+m2+3m,
解得m=5或m=-8.
故答案為:5或-8.

點(diǎn)評(píng) 本題考查了平面向量的數(shù)量積運(yùn)算,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知x,y>0,且x+y=1,則$\frac{1}{2x+1}$+$\frac{4}{2y+1}$的最小值為$\frac{9}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.在△ABC中,內(nèi)角A,B,C的對(duì)邊為a,b,c,已知2cos2$\frac{A}{2}$+(cosB-$\sqrt{3}$sinB)cosC=1.
(I)求角C的值.
(Ⅱ)若c=2,且△ABC的面積為$\sqrt{3}$,求a,b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知在△ABC中,內(nèi)角∠A、∠B、∠C所對(duì)的邊分別為a、b、c,其中c為最長(zhǎng)邊.
(1)若sin2A+sin2B=1,試判斷△ABC的形狀;
(2)若a2-c2=2b,且sinB=4cosAsinC,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知實(shí)數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{x+2y≤8}\\{2x+y≤8}\\{x≥0}\\{y≥0}\end{array}\right.$ 則目標(biāo)函數(shù)z=6x+2y-1的最大值為(  )
A.17B.20C.21D.23

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.若雙曲線M上存在四個(gè)點(diǎn)A,B,C,D,使得四邊形ABCD是正方形,則雙曲線M的離心率的取值范圍是( 。
A.$({\sqrt{2},+∞})$B.$({\sqrt{2},2})$C.$({2,2+\sqrt{2}})$D.$({\sqrt{5},+∞})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的短軸長(zhǎng)為2$\sqrt{3}$,且離心率e=$\frac{1}{2}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)F1、F2是橢圓的左、右焦點(diǎn),過(guò)F2的直線與橢圓相交于P、Q兩點(diǎn),求△F1PQ面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.設(shè)函數(shù)f(x)=|2x+a|+|x-$\frac{1}{a}$|(x∈R,實(shí)數(shù)a<0).
(Ⅰ)若f(0)>$\frac{5}{2}$,求實(shí)數(shù)a的取值范圍;
(Ⅱ)求證:f(x)≥$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.若集合A={0,1,2,4},B={1,2,3},則A∪B=( 。
A.{1,2}B.{0,3,4}C.{0,1,2,3,4}D.{0,1,1,2,2,3,4}

查看答案和解析>>

同步練習(xí)冊(cè)答案