6.若$\left\{\begin{array}{l}x≤2\\ y≤2\\ x+y≥2\end{array}\right.$,則目標(biāo)函數(shù)z=x-y的取值范圍是[-2,2].

分析 作出不等式組對(duì)應(yīng)的平面區(qū)域,利用z的幾何意義進(jìn)行求解即可.

解答 解:作出不等式組對(duì)$\left\{\begin{array}{l}x≤2\\ y≤2\\ x+y≥2\end{array}\right.$應(yīng)的平面區(qū)域如圖:
由z=x-y,得y=x-z表示,斜率為1縱截距為-z的一組平行直線,
平移直線y=x-z,當(dāng)直線y=x-z經(jīng)過點(diǎn)C時(shí),直線y=x-z的截距最小,此時(shí)z最大,
當(dāng)直線經(jīng)過點(diǎn)B時(shí),此時(shí)直線y=x-z截距最大,z最。
由$\left\{\begin{array}{l}{x=2}\\{x+y=2}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=2}\\{y=0}\end{array}\right.$,即C(2,0),此時(shí)zmax=2.
由$\left\{\begin{array}{l}{y=2}\\{x+y=2}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=0}\\{y=2}\end{array}\right.$,即B(0,2),此時(shí)zmin=0-2=-2.
∴-2≤z≤2,
故答案為:[-2,2].

點(diǎn)評(píng) 本題主要考查線性規(guī)劃的基本應(yīng)用,利用z的幾何意義是解決線性規(guī)劃問題的關(guān)鍵,注意利用數(shù)形結(jié)合來解決.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.如圖,已知PA與圓O相切于點(diǎn)A,經(jīng)過圓心O的割線PBC交圓O于點(diǎn)B,C,AC=AP,則$\frac{PC}{AC}$的值為(  )
A.$\sqrt{3}$B.$\sqrt{2}$C.$\frac{2\sqrt{3}}{3}$D.$\frac{4\sqrt{2}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.如圖為某四面體的三視圖(都是直角三角形),則此四面體的表面三角形為直角三角形的個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.(1)用分析法證明:$\sqrt{6}$-2$\sqrt{2}$>$\sqrt{5}$-$\sqrt{7}$;
(2)用反證法證明:$\sqrt{2}$,$\sqrt{3}$,$\sqrt{5}$不能為同一等差數(shù)列中的三項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,已知四棱錐P-ABCD中,底面ABCD為菱形,PA⊥平面ABCD,∠ABC=60°,E,F(xiàn)分別是BC,PC的中點(diǎn).
(Ⅰ)證明:AE⊥平面PAD
(Ⅱ)若AP=AB=2,求二面角E-AF-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.求曲線y=x3-$\frac{1}{x}$在點(diǎn)(1,0)處的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.某市對(duì)居民在某一時(shí)段用電量(單位:度)進(jìn)行調(diào)查后,為對(duì)數(shù)據(jù)進(jìn)行分析統(tǒng)計(jì),按照數(shù)據(jù)大、小將數(shù)據(jù)分成A、B、C三組,如表所示:
 分組 A B C
 用電量 (0,80] (80,250] (250,+∞)
從調(diào)查結(jié)果中隨機(jī)抽取了10個(gè)數(shù)據(jù),制成了如圖的莖葉圖:
(Ⅰ)寫出這10個(gè)數(shù)據(jù)的中位數(shù)和極差;
(Ⅱ)從這10個(gè)數(shù)據(jù)中任意取出3個(gè),其中來自B組的數(shù)據(jù)個(gè)數(shù)為ξ,求ξ的分布列和數(shù)學(xué)期望;
(Ⅲ)用抽取的這10個(gè)數(shù)據(jù)作為樣本估計(jì)全市的居民用電量情況,從全市依次隨機(jī)抽取20戶,若抽到n戶用電量為B組的可能性較大,求n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.如圖,網(wǎng)格紙上正方形小格的邊長(zhǎng)為1,圖中粗線畫的是某幾何體的三視圖,則該幾何體的表面積S=(  )
A.17πB.20πC.22πD.$(17+5\sqrt{17})π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)隨機(jī)變量的分布列為如表所示,則Eξ=( 。
ξ0123
p0.10.30.50.1
A.1B.1.8C.1.2D.1.6

查看答案和解析>>

同步練習(xí)冊(cè)答案