A. | $\sqrt{3}$ | B. | $\sqrt{2}$ | C. | $\frac{2\sqrt{3}}{3}$ | D. | $\frac{4\sqrt{2}}{3}$ |
分析 根據(jù)弦切角定理,得到∠BAP=∠C,根據(jù)AC=AP得到∠APC=∠C,利用∠APC=∠C=∠BAP,再在△APC中根據(jù)直徑BC得到∠PAC=90°+∠BAP,利用三角形內(nèi)角和定理可得∠C.利用直角三角形中正切的定義,得到$\frac{CA}{AB}$=$\frac{1}{tan30°}$=$\sqrt{3}$.最后通過內(nèi)角相等證明出△APC∽△BPA,從而$\frac{PC}{PA}$=$\frac{CA}{AB}$=$\sqrt{3}$.
解答 解:∵PA是切線,AB是弦,
∴∠BAP=∠C.
∵∠APC=∠BPA,
∵AC=AP,
∴∠APC=∠C
∴∠APC=∠C=∠BAP.
由三角形內(nèi)角和定理可知,∠APC+∠C+∠CAP=180°.
∵BC是圓O的直徑,
∴∠BAC=90°.
∴∠APC+∠C+∠BAP=180°-90°=90°.
∴∠C=∠APC=∠BAP=$\frac{1}{3}×90°$=30°.
在Rt△ABC中,$\frac{CA}{AB}$=$\frac{1}{tan30°}$=$\sqrt{3}$.
∵在△APC與△BPA中
∠BAP=∠C,∠APB=∠CPA,
∴△APC∽△BPA.
∴$\frac{PC}{PA}$=$\frac{CA}{AB}$=$\sqrt{3}$,
∵AC=AP,∴$\frac{PC}{AC}$=$\sqrt{3}$.
故選:A.
點(diǎn)評 本題綜合考查了弦切角、三角形的外角定理、直角三角形中三角函數(shù)的定義和相似三角形的性質(zhì)等知識點(diǎn),屬于中檔題.找到題中角的等量關(guān)系,計(jì)算出Rt△ABC是含有30度的直角三角形,是解決本題的關(guān)鍵所在.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,1) | B. | (1,2) | C. | (2,+∞) | D. | (0,1)∪(2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a7 | B. | a8 | C. | a9 | D. | a10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com