分析 (1)列表,描點,連線即可利用“五點作圖法”畫出函數(shù)y=f(x)在[0,π]上的圖象.
(2)利用x的范圍,可求$\frac{π}{6}≤2x-\frac{π}{3}≤\frac{2π}{3}$,根據(jù)正弦函數(shù)的圖象和性質(zhì)即可得解其最值.
(3)由題意可得f(x)-2<m<f(x)+2,從而可得m>f(x)max-2且m<f(x)min+2,由$x∈[{\frac{π}{4},\frac{π}{2}}]$,求得f(x)的最值,即可解得m的取值范圍.
解答 解:(Ⅰ)列表如下:
x | 0 | $\frac{π}{6}$ | $\frac{5π}{12}$ | $\frac{2π}{3}$ | $\frac{11π}{12}$ | π |
2x-$\frac{π}{3}$ | -$\frac{π}{3}$ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | $\frac{5π}{3}$ |
y | 1-$\sqrt{3}$ | 1 | 3 | 0 | -1 | 1-$\sqrt{3}$ |
點評 本題主要考查三角函數(shù)的圖象和性質(zhì),五點法作函數(shù)y=Asin(ωx+φ)的圖象,要求熟練掌握五點作圖法,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | $3\sqrt{2}$ | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a>b>c | B. | a<b<c | C. | b<a<c | D. | b>a>c |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | $\frac{1}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{4}{3}$ | B. | -$\frac{4}{3}$ | C. | $\frac{3}{4}$ | D. | -$\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | -5i | C. | -2i | D. | -i |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | -$\sqrt{3}$ | C. | 1 | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+…+$\frac{1}{11}$ | B. | $\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+…+$\frac{1}{22}$ | C. | $\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+…+$\frac{1}{10}$ | D. | $\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+…+$\frac{1}{20}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{5π}{6}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com