7.自圓x2+y2-2x-6y+9=0外一點(diǎn)P(5,0)向該圓引切線,切點(diǎn)分別為A,B,過A,B的直線方程為( 。
A.3x+4y-20=0B.4x+3y-4=0C.3x-4y-15=0D.4x-3y+4=0

分析 先求出以PC中點(diǎn)為圓心,PC長為直徑的圓的方程,再讓兩圓做差,即可求出公共弦所在直線方程.

解答 解:設(shè)已知圓圓心為C(1,3),則|PC|=$\sqrt{(5-1)^{2}+(3-0)^{2}}=5$=2r
∴$r=\frac{5}{2}$
∴P,A,B,C四點(diǎn)共圓的方程為
$(x-3)^{2}+(y-\frac{3}{2})^{2}=(\frac{5}{2})^{2}$
與已知圓相減得:4x-3y+4=0即為所求.

點(diǎn)評 本題考查了圓外一點(diǎn)向圓引切線,切點(diǎn)所在直線方程,構(gòu)造兩圓相減.屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在(1+x+x2)(1-x)10展開式中,x4的系數(shù)為( 。
A.C${\;}_{9}^{4}$+C${\;}_{9}^{1}$B.C${\;}_{9}^{4}$-C${\;}_{9}^{1}$
C.C${\;}_{10}^{4}$+C${\;}_{10}^{3}$+C${\;}_{10}^{2}$D.C${\;}_{10}^{4}$-C${\;}_{10}^{3}$-C${\;}_{10}^{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在邊長為1的等邊△ABC的BC邊上任取一點(diǎn)D,使$\frac{1}{2}$≤$\overrightarrow{AB}•\overrightarrow{AD}$≤$\frac{2}{3}$的概率是( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)f(x)=2x-1(x∈R),規(guī)定:給定一個(gè)實(shí)數(shù)x0,第一次賦值x1=f(x0),若x1≤257,則繼續(xù)第二次賦值x2=f(x1),若x2≤257,則繼續(xù)第三次賦值x3=f(x2),…,以此類推,若xn-1≤257,則xn=f(xn-1),否則停止賦值,已知第8次賦值后該過程停止,則x0的取值范圍是(2,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)(2x+1)3=a3x3+a2x2+a1x+a0,則a0+a1+a2+a3=27.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知命題p:“?x∈R,x≥2,那么命題¬p為?x∈R,x<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知等差數(shù)列{an}的首項(xiàng)a1=1,公差d>0,且第2項(xiàng),第5項(xiàng),第14項(xiàng)分別是等比數(shù)列{bn}的第2項(xiàng),第3項(xiàng),第4項(xiàng).
(1)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(2)設(shè)cn=an•bn(n∈N*),求{cn}的前n項(xiàng)和為Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.(Ⅰ)求不等式|2x-4|+|x+1|≥5解集;
(Ⅱ)已知a,b為正數(shù),若直線(a-1)x+2y+6=0與直線2x+by-5=0互相垂直,求證:$\frac{1}{{a}^{2}}+\frac{1}{^{2}}$≥8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在極坐標(biāo)系中,曲線C:ρ=$\frac{2}{cosθ+2sinθ}$,A,B是曲線C上的兩點(diǎn),O為極點(diǎn),∠AOB=$\frac{π}{2}$,則△AOB面積的最小值為$\frac{4}{5}$.

查看答案和解析>>

同步練習(xí)冊答案