20.計算:
(1)(2$\frac{7}{9}$)0.5+0.1-2+(2$\frac{10}{27}$)${\;}^{-\frac{2}{3}}$-3π0+$\frac{37}{48}$;   
(2)$\frac{lg2+lg5-lg8}{lg50-lg40}$+log${\;}_{\sqrt{2}}$$\frac{\sqrt{2}}{2}$.

分析 (1)利用有理指數(shù)冪的運算法則化簡求解即可.
(2)利用對數(shù)運算法則化簡求解即可.

解答 解:(1)(2$\frac{7}{9}$)0.5+0.1-2+(2$\frac{10}{27}$)${\;}^{-\frac{2}{3}}$-3π0+$\frac{37}{48}$
=$\frac{5}{3}$+100+$\frac{9}{16}$-3+$\frac{37}{48}$
=99.
(2)$\frac{lg2+lg5-lg8}{lg50-lg40}$+log${\;}_{\sqrt{2}}$$\frac{\sqrt{2}}{2}$
=$\frac{1-3lg2}{1-3lg2}$+2$lo{g}_{2}{2}^{-\frac{1}{2}}$
=0.

點評 本題考查有理指數(shù)冪的運算以及對數(shù)運算法則的應用,考查計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

10.如圖所示,四棱錐P-ABCD,底面ABCD是邊長為2的菱形,∠ABC=60°,O為AC,BD的交點,且PO⊥平面ABCD,PO=$\sqrt{6}$,點M為側棱PD上一點,且滿足PD⊥平面ACM.
(1)若在棱PD上存在一點N,且BN∥平面AMC,確定點N的位置,并說明理由;
(2)求點B到平面MCD的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.在直角坐標系中,圓C1:x2+y2=1經(jīng)過伸縮變換$\left\{\begin{array}{l}{x′=3x}\\{y′=2y}\end{array}\right.$后得到曲線C2以坐標原點為極點,x軸的正半軸為極軸,并在兩種坐標系中取相同的單位長度,建立極坐標系,直線l的極坐標方程為cosθ+2sinθ=$\frac{10}{ρ}$
(1)求曲線C2的直角坐標方程及直線l的直角坐標方程;
(2)在C2上求一點M,使點M到直線l的距離最小,并求出最小距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.數(shù)列{an}的通項公式為an=2n-1,則使不等式${a_1}^2+{a_2}^2+…+{a_n}^2<5×{2^{n+1}}$成立的n的最大值為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.下列函數(shù)是偶函數(shù)的是(  )
A.f(x)=x+$\frac{1}{x}$B.f(x)=$\frac{1}{{x}^{2}}$C.f(x)=x3-2xD.f(x)=x2,x∈[-1,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.如圖所示,直三棱柱ABC-A1B1C1的各條棱長均為a,D是側棱CC1的中點.
(1)求證:平面AB1D⊥平面ABB1A1;
(2)求平面AB1D與平面ABC所成二面角(銳角)的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知函數(shù)f(x)=a2015x2015+a2013x2013+a2011x2011+…+a3x3+a1x+1,且f(1)=2,則f(-1)=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知復數(shù)z=(t-1)+(t2-2t-3)i(t∈R)對應的點在第四象限,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知a=$\int_0^{\frac{π}{6}}$cosxdx,則x(x-$\frac{1}{ax}$)7的展開式中的常數(shù)項是-128.(用數(shù)字作答)

查看答案和解析>>

同步練習冊答案