如圖,S是正方形ABCD所在平面外一點(diǎn),且SD⊥面ABCD ,AB=1,SB=.

(1)求證:BCSC;
(2) 設(shè)M為棱SA中點(diǎn),求異面直線DMSB所成角的大小
(3) 求面ASD與面BSC所成二面角的大小;

(1) 先證BC⊥平面SDC    (2) 異面直線DM與SB所成的角為90°(3) 面ASD與面BSC所成
的二面角為45°

解析試題分析:(1)∵底面ABCD是正方形,∴BC⊥DC.
∵SD⊥底面ABCD,∴SD⊥BC,又DC∩SD=D,
∴BC⊥平面SDC,∴BC⊥SC.
(2)取AB中點(diǎn)P,連結(jié)MP,DP.
在△ABS中,由中位線定理得MP//SB,或其補(bǔ)角為所求.
,又
∴在△DMP中,有DP2=MP2+DM2, 
即異面直線DM與SB所成的角為90°.
(3).∵SD⊥底面ABCD,且ABCD為正方形,
∴可把四棱錐S—ABCD補(bǔ)形為長方體A1B1C1S—ABCD,
如圖2,面ASD與面BSC所成的二面角就是面ADSA1與面
BCSA1所成的二面角,
∵SC⊥BC,BC//A1S, ∴SC⊥A1S,
又SD⊥A1S,∴∠CSD為所求二面角的平面角.
在R t△SCB中,由勾股定理得SC=,在R t△SDC中,
由勾股定理得SD=1.
∴∠CSD=45°.即面ASD與面BSC所成的二面角為45°.
考點(diǎn):二面角的平面角及求法;異面直線及其所成的角.
點(diǎn)評:本題考查異面直線垂直的證明,考查異面直線所成角的大小的求法,考查二面角的大小的求法,解題
時(shí)要認(rèn)真審題,仔細(xì)解答,注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)為正方形的中心,四邊形是平行四邊形,且平面平面,若.

(1)求證:平面.
(2)線段上是否存在一點(diǎn),使平面?若存在,求的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,中,側(cè)棱與底面垂直,,,點(diǎn)分別為的中點(diǎn).

(1)證明:;
(2)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知某幾何體的直觀圖和三視圖如下圖所示,其正視圖為矩形,側(cè)視圖為等腰直角三角形,俯視圖為直角梯形
(1)求證:; (2)求證:;
(3)設(shè)中點(diǎn),在邊上找一點(diǎn),使平面,并求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖。在直三棱柱ABC—A1B1C1中,AB=BC=2AA1,∠ABC=90°,M是BC中點(diǎn)。

(I)求證:A1B∥平面AMC1;
(II)求直線CC1與平面AMC1所成角的正弦值;
(Ⅲ)試問:在棱A1B1上是否存在點(diǎn)N,使AN與MC1成角60°?若存在,確定點(diǎn)N的位置;若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在三棱錐P-ABC中, AB="AC=4," D、E、F分別為PA、PC、BC的中點(diǎn), BE="3," 平面PBC⊥平面ABC, BE⊥DF.

(Ⅰ)求證:BE⊥平面PAF;
(Ⅱ)求直線AB與平面PAF所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,正方體ABCD—A1B1C1D1棱長為8,E、F分別為AD1,CD1中點(diǎn),G、H分別為棱DA,DC上動點(diǎn),且EH⊥FG.

(1)求GH長的取值范圍;
(2)當(dāng)GH取得最小值時(shí),求證:EH與FG共面;并求出此時(shí)EH與FG的交點(diǎn)P到直線的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知四棱錐的底面為等腰梯形,,,垂足為,是四棱錐的高。

(Ⅰ)證明:平面 平面;
(Ⅱ)若,60°,求四棱錐的體積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
在正方體ABCD-A1B1C1D1中,E、F為棱AD、AB的中點(diǎn).

(1)求證:EF∥平面CB1D1;
(2)求證:平面CAA1C1⊥平面CB1D1

查看答案和解析>>

同步練習(xí)冊答案