【題目】返鄉(xiāng)創(chuàng)業(yè)的大學(xué)生一直是人們比較關(guān)注的對(duì)象,他們從大學(xué)畢業(yè),沒有選擇經(jīng)濟(jì)發(fā)達(dá)的大城市,而是回到自己的家鄉(xiāng),為養(yǎng)育自己的家鄉(xiāng)貢獻(xiàn)自己的力量,在享有“國(guó)際花園城市”稱號(hào)的溫江幸福田園,就有一個(gè)由大學(xué)畢業(yè)生創(chuàng)辦的農(nóng)家院“小時(shí)代”,其獨(dú)特的裝修風(fēng)格和經(jīng)營(yíng)模式,引來無數(shù)人的關(guān)注,帶來紅紅火火的現(xiàn)狀,給青年大學(xué)生們就業(yè)創(chuàng)業(yè)上很多新的啟示.在接受采訪中,該老板談起以下情況:初期投入為72萬元,經(jīng)營(yíng)后每年的總收入為50萬元,第n年需要付出房屋維護(hù)和工人工資等費(fèi)用是首項(xiàng)為12,公差為4的等差數(shù)列(單位:萬元).

1)求

2)該農(nóng)家樂第幾年開始盈利?能盈利幾年?(即總收入減去成本及所有費(fèi)用之差為正值)

3)該農(nóng)家樂經(jīng)營(yíng)多少年,其年平均獲利最大?年平均獲利的最大值是多少?(年平均獲利年總獲利

【答案】1;(2)第3年開始盈利;能盈利15年;(3)經(jīng)過6年經(jīng)營(yíng)年平均獲利最大,最大值為16萬元.

【解析】

1)利用等差數(shù)列的通項(xiàng)公式即可求解.

2)設(shè)農(nóng)家樂第n年后開始盈利,盈利為y萬元,則,令,解不等式即可.

3)列出年平均獲利,利用基本不等式即可求解.

解:(1)由題意知,每年需付出的費(fèi)用是以12為首項(xiàng),4為公差的等差數(shù)列,

2)設(shè)該農(nóng)家樂第n年后開始盈利,盈利為y萬元,

,得,解得,

即第3年開始盈利.能盈利15年.

3)年平均獲利為

當(dāng)且僅當(dāng),即時(shí),年平均獲利最大.

故經(jīng)過6年經(jīng)營(yíng)年平均獲利最大,最大值為16萬元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間和極值;

(2)若有兩個(gè)零點(diǎn),求實(shí)數(shù)的范圍;

(3)已知函數(shù)與函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱,如果,且,證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2017年某市有2萬多文科考生參加高考,除去成績(jī)?yōu)?/span>分(含分)以上的3人與成績(jī)?yōu)?/span>分(不含分)以下的3836人,還有約1.9萬文科考生的成績(jī)集中在內(nèi),其成績(jī)的頻率分布如下表所示:

分?jǐn)?shù)段

頻率

0.108

0.133

0.161

0.183

分?jǐn)?shù)段

頻率

0.193

0.154

0.061

0.007

(Ⅰ)試估計(jì)該次高考成績(jī)?cè)?/span>內(nèi)文科考生的平均分(精確到);

(Ⅱ)一考生填報(bào)志愿后,得知另外有4名同分?jǐn)?shù)考生也填報(bào)了該志愿.若該志愿計(jì)劃錄取3人,并在同分?jǐn)?shù)考生中隨機(jī)錄取,求該考生不被該志愿錄取的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某班50位學(xué)生期中考試數(shù)學(xué)成績(jī)的頻率分布直方圖如圖所示,其中成績(jī)分組區(qū)間是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]

(Ⅰ)求圖中的值,并估計(jì)該班期中考試數(shù)學(xué)成績(jī)的眾數(shù);

(Ⅱ)從成績(jī)不低于90分的學(xué)生和成績(jī)低于50分的學(xué)生中隨機(jī)選取2人,求這2人成績(jī)均不低于90分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有以下四種變換方式:

向左平移個(gè)單位長(zhǎng)度,再把所得各點(diǎn)的橫坐標(biāo)縮短到原來的縱坐標(biāo)不變;

向左平移個(gè)單位長(zhǎng)度,再把所得各點(diǎn)的橫坐標(biāo)縮短到原來的縱坐標(biāo)不變;

把各點(diǎn)的橫坐標(biāo)縮短到原來的縱坐標(biāo)不變,再向左平移個(gè)單位長(zhǎng)度;

把各點(diǎn)的橫坐標(biāo)縮短到原來的縱坐標(biāo)不變,再向左平移個(gè)單位長(zhǎng)度;

其中能將函數(shù)的圖象變?yōu)楹瘮?shù)的圖象的是  

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)x2mlnx,h(x)x2xa.

(1)當(dāng)a0時(shí),f(x)h(x)(1,+∞)上恒成立,求實(shí)數(shù)m的取值范圍;

(2)當(dāng)m2時(shí),若函數(shù)k(x)f(x)h(x)在區(qū)間(1,3)上恰有兩個(gè)不同零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】汽車的燃油效率是指汽車每消耗1升汽油行駛的里程,下圖描述了甲、乙、丙三輛汽車在不同速度下的燃油效率情況. 下列敘述中正確的是( )

A. 消耗1升汽油,乙車最多可行駛5千米

B. 以相同速度行駛相同路程,三輛車中,甲車消耗汽油最多

C. 甲車以80千米/小時(shí)的速度行駛1小時(shí),消耗10升汽油

D. 某城市機(jī)動(dòng)車最高限速80千米/小時(shí). 相同條件下,在該市用丙車比用乙車更省油

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】黨的十九大報(bào)告指出,要推進(jìn)綠色發(fā)展,倡導(dǎo)“簡(jiǎn)約知適度、綠色低碳”的生活方式,開展創(chuàng)建“低碳生活,綠色出行”等行動(dòng).在這一號(hào)召下,越來越多的人秉承“能走不騎,能騎不坐,能坐不開”的出行理念,盡可能采取乘坐公交車騎自行車或步行等方式出行,減少交通擁堵,共建清潔、暢通高效的城市生活環(huán)境.某市環(huán)保機(jī)構(gòu)隨機(jī)抽查統(tǒng)計(jì)了該市部分成年市民某月騎車次數(shù),統(tǒng)計(jì)如下:

次數(shù)

人數(shù)

年齡

18歲至31歲

8

12

20

60

140

150

32歲至44歲

12

28

20

140

60

150

45歲至59歲

25

50

80

100

225

450

60歲及以上

25

10

10

19

4

2

聯(lián)合國(guó)世界衛(wèi)生組織于2013年確定新的年齡分段:44歲及以下為青年人,45歲至59歲為中年人,60歲及以上為老年人.

(I)若從被抽查的該月騎車次數(shù)在的老年人中隨機(jī)選出兩名幸運(yùn)者給予獎(jiǎng)勵(lì),求其中一名幸運(yùn)者該月騎車次數(shù)在之間,另一名幸運(yùn)者該月騎車次數(shù)在之間的概率;

(Ⅱ)用樣本估計(jì)總體的思想,解決如下問題:

()估計(jì)該市在32歲至44歲年齡段的一個(gè)青年人每月騎車的平均次數(shù);

() 若月騎車次數(shù)不少于30次者稱為“騎行愛好者”,根據(jù)這些數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過0.001的前提下認(rèn)為“騎行愛好者”與“青年人”有關(guān)?

參考數(shù)據(jù):

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,平面平面,.設(shè)分別為,中點(diǎn).

1)求證:平面

2)求證:平面;

3)試問在線段上是否存在點(diǎn),使得過三點(diǎn),的平面內(nèi)的任一條直線都與平面平行?若存在,指出點(diǎn)的位置并證明;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案