6.函數(shù)f(x)=$\left\{\begin{array}{l}{x^2}-2x,x≥0\\ \frac{1}{x},x<0\end{array}$,且f(1)+f(a)=-2,則a的取值集合為{-1,1}.

分析 由已知可得:f(a)=-1,結(jié)合已知中分段函數(shù)的解析式分類討論滿足條件的a值,可得答案.

解答 解:∵f(x)=$\left\{\begin{array}{l}{x^2}-2x,x≥0\\ \frac{1}{x},x<0\end{array}$,
∴f(1)=-1,
若f(1)+f(a)=-2,則f(a)=-1,
當(dāng)a≥0時,解a2-2a=-1得:a=1,
當(dāng)a<0時,解$\frac{1}{a}$=-1得:a=-1,
故a的取值集合為:{-1,1}.
故答案為:{-1,1}

點評 本題考查的知識點是分段函數(shù)的應(yīng)用,函數(shù)求值,分類討論思想,難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)f(x)是定義在(-∞,+∞)上的偶函數(shù),且它在[0,+∞)上單調(diào)遞增,若a=f(log${\;}_{\sqrt{2}}$$\frac{1}{\sqrt{3}}$),b=f(log${\;}_{\sqrt{3}}$$\frac{1}{\sqrt{2}}$),c=f(-2),則a,b,c的大小關(guān)系是b<a<c(從小到大排)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若c>1,0<b<a<1,則( 。
A.ac<bcB.bac<abcC.alogbc<blogacD.logac<logbc

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)x>0,y∈R,則“x>y”是“x>|y|”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=x+$\frac{t}{x}$(t>0)有如下性質(zhì):該函數(shù)在(0,$\sqrt{t}$]上是減函數(shù),在[$\sqrt{t}$,+∞)是增函數(shù)
(1)若g(x+$\frac{1}{x}$)=x2+$\frac{1}{{x}^{2}}$,求g(x)的解析式
(2)已知函數(shù)h(x)=$\frac{4{x}^{2}-12x-3}{2x+1}$(x∈[0,1]),利用上述性質(zhì),求h(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知復(fù)數(shù)z滿足:zi=2+i(i是虛數(shù)單位),則z對應(yīng)的點在復(fù)平面的( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左頂點為A1,右焦點為F2,過點F2作垂直于x軸的直線交該橢圓于M,N兩點,直線A1M的斜率為$\frac{1}{2}$.
(1)求橢圓的離心率;
(2)若△A1MN的外接圓在M處的切線與橢圓交于另一點D,且△F2 MD的面積為$\frac{12}{7}$,求該橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知角α的終邊落在直線y=-2x上,則sin2α=-$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知點F是拋物線C:y2=4x的焦點,點A在拋物線C上,若|AF|=4,則線段AF的中點到拋物線C的準(zhǔn)線的距離為( 。
A.4B.3C.2D.1

查看答案和解析>>

同步練習(xí)冊答案