17.?dāng)?shù)列2、5、11、20、32、47、x、…中的x等于(  )
A.56B.33C.65D.64

分析 本題可先用加、減、乘、除等對數(shù)列對已知幾項(xiàng)進(jìn)行拆分研究,發(fā)現(xiàn)規(guī)律后,再運(yùn)用規(guī)律解決問題.

解答 解:∵數(shù)列的前幾項(xiàng)為2、5、11、20、32、47、x、…,
其中5-2=3,
11-5=6
20-11=9,
32-20=12,
47-32=15
猜想:x-47=18,
解得x=65,
而x=65時(shí),正好滿足上述要求.
故選:C.

點(diǎn)評 本題考查的是數(shù)列知識(shí),實(shí)質(zhì)是要發(fā)現(xiàn)這列數(shù)的規(guī)律,要注意本題的規(guī)律不唯一.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知:△ABC中,角A,B,C所對應(yīng)的邊為a,b,c,其中B=60°,c=4.
(Ⅰ)若C=45°,求b;
(Ⅱ)若b=2$\sqrt{7}$,求a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知存在唯一的實(shí)數(shù)對(p,q),使不等式|$\sqrt{{r}^{2}-{x}^{2}}$-px-q|≤t(其中r>0,t>0)對?x∈[0,r]恒成立,則$\frac{t}{r}$=$\frac{\sqrt{2}-1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)函數(shù)f(x)=$\frac{1}{3}$x3-$\frac{3}{2}$x2+2x,則(  )
A.函數(shù)f(x)無極值點(diǎn)B.x=1為f(x)的極小值點(diǎn)
C.x=2為f(x)的極大值點(diǎn)D.x=2為f(x)的極小值點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)f(x)=$\left\{\begin{array}{l}{(2x-1)^{3},x≤m}\\{|2x-1|,x>m}\end{array}\right.$,若存在實(shí)數(shù)a,使得函數(shù)g(x)=f(x)-a有兩個(gè)零點(diǎn),則m的取值范圍是(-∞,$\frac{1}{2}$)∪(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知數(shù)列{an}中a1=3,an=$\frac{{a}_{n-1}}{{a}_{n-1}+1}$.
(1)求出a2,a3,a4的值;
(2)利用(1)的結(jié)論歸納出它的通項(xiàng)公式,并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)y=3cosx (0≤x≤2π)的圖象和直線y=3圍成一個(gè)封閉的平面圖形,則其面積為6π..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.大學(xué)畢業(yè)生小張到甲、乙、丙三個(gè)單位應(yīng)聘,各單位是否錄用他是相互獨(dú)立的,其被錄用的概率分別為$\frac{4}{5}$,$\frac{2}{3}$,$\frac{3}{4}$(允許小張被多個(gè)單位同時(shí)錄用),
(1)求小張沒有被錄用的概率;
(2)求小張恰被兩個(gè)單位錄用的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.函數(shù)f(x)=x3+2xf′(1),則函數(shù)f(1)=-5.

查看答案和解析>>

同步練習(xí)冊答案