A. | $\frac{1}{2}$ | B. | $\frac{1}{4}$ | C. | $\frac{3}{4}$ | D. | $\frac{3}{8}$ |
分析 根據(jù)$\overrightarrow{PA}+\overrightarrow{PB}+\overrightarrow{PC}=2\overrightarrow{AB}$,可得3$\overrightarrow{AP}$=$\overrightarrow{BC}$,所以 $\overrightarrow{AP}$∥$\overrightarrow{BC}$并且方向一樣,由此可求S△PAB,即可求出芝麻恰落在△PAB內(nèi)的概率
解答 解:∵$\overrightarrow{PA}+\overrightarrow{PB}+\overrightarrow{PC}=2\overrightarrow{AB}$=2($\overrightarrow{AP}$+$\overrightarrow{PB}$),
∴3$\overrightarrow{AP}$=$\overrightarrow{BC}$,
∴$\overrightarrow{AP}$∥$\overrightarrow{BC}$并且方向一樣,
設(shè)AP與BC的距離為h,
∵S△PAB=$\frac{1}{2}$|$\overrightarrow{AP}$|h,S△ABC=$\frac{1}{2}$|$\overrightarrow{BC}$|h,$\overrightarrow{BC}$|=3|$\overrightarrow{AP}$|,S△ABC=12
∴S△PAB=$\frac{1}{3}$S△ABC=4,
∴平面四邊形PABC的面積為16,
∴芝麻恰落在△PAB內(nèi)的概率為$\frac{1}{4}$.
故選:B.
點(diǎn)評 本題考查向量知識的運(yùn)用,考查三角形面積的計算,解題的關(guān)鍵是確定$\overrightarrow{AP}$∥$\overrightarrow{BC}$并且方向一樣并且方向一樣.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [0,1) | B. | (-1,1) | C. | (-1,0] | D. | (-1,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 等腰三角形 | B. | 直角三角形 | ||
C. | 等腰三角形或直角三角形 | D. | 等腰直角三角形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-2,+∞] | B. | (-∞,2) | C. | [2,+∞) | D. | (log37,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1+$\sqrt{2}$+$\sqrt{3}$ | B. | 2+$\sqrt{2}$+$\sqrt{3}$ | C. | 3+$\sqrt{2}$+$\sqrt{3}$ | D. | 4+$\sqrt{2}$+$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
男 | 女 | 總計 | |
喜愛 | 40 | 60 | 100 |
不喜愛 | 20 | 20 | 40 |
總計 | 60 | 80 | 140 |
p(k2≥k0 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
k0 | 2.705 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com