分析 x2+y2-4x-6y+9=0,配方為:(x-2)2+(y-3)2=4,令x=2+2cosθ,y=3+2sinθ,θ∈[0,2π).再利用和差公式、三角函數(shù)的單調(diào)性即可得出.
解答 解:x2+y2-4x-6y+9=0,配方為:(x-2)2+(y-3)2=4,
令x=2+2cosθ,y=3+2sinθ,θ∈[0,2π).
則x2+y2=(2+2cosθ)2+(3+2sinθ)2=8cosθ+12sinθ+17
=4$\sqrt{13}$$(\frac{2}{\sqrt{13}}cosθ+\frac{3}{\sqrt{13}}sinθ)$+17
=$4\sqrt{13}$sin(θ+φ)+17,φ=arctan$\frac{2}{3}$.
∴x2+y2的取值范圍是$[17-4\sqrt{13},17+4\sqrt{13}]$.
故答案為:$[17-4\sqrt{13},17+4\sqrt{13}]$.
點評 本題考查了圓的參數(shù)方程、和差公式、三角函數(shù)的單調(diào)性,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{1}{4}$ | C. | $\frac{3}{4}$ | D. | $\frac{3}{8}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com