10.已知平面向量$\overrightarrow{a}$和$\overrightarrow$的夾角為60°,$\overrightarrow{a}$=(0,1),|$\overrightarrow$|=2,則|2$\overrightarrow{a}$+$\overrightarrow$|=( 。
A.2B.12C.$\sqrt{3}$D.2$\sqrt{3}$

分析 根據(jù)向量數(shù)量積的定義先求出$\overrightarrow{a}$•$\overrightarrow$=1,然后利用向量模長與向量數(shù)量積的關系進行轉化求解即可.

解答 解:∵$\overrightarrow{a}$=(0,1),∴|$\overrightarrow{a}$|=1,
∵平面向量$\overrightarrow{a}$和$\overrightarrow$的夾角為60°,|$\overrightarrow$|=2,
∴$\overrightarrow{a}$•$\overrightarrow$=|$\overrightarrow{a}$||$\overrightarrow$|cos60°=1×$2×\frac{1}{2}$=1,
則|2$\overrightarrow{a}$+$\overrightarrow$|2=4|$\overrightarrow{a}$|2+2$\overrightarrow{a}$•$\overrightarrow$+|$\overrightarrow$|2=4+2×2×1+4=12,
則|2$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{12}$=2$\sqrt{3}$,
故選:D

點評 本題主要考查向量數(shù)量積的應用,根據(jù)向量數(shù)量積的定義以及向量模長的公式是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

16.用系統(tǒng)抽樣法(按等距離的規(guī)則),要從160名學生中抽取一定容量的樣本,將160名學生從1~160進行編號,已知抽樣號碼中最小的兩個分別是7,15,則抽樣號碼的最大值是( 。
A.23B.125C.160D.159

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.在等比數(shù)列{an}中,若a2a5=-$\frac{3}{4}$,a2+a3+a4+a5=$\frac{5}{4}$,則$\frac{1}{a_2}+\frac{1}{a_3}+\frac{1}{a_4}+\frac{1}{a_5}$=(  )
A.1B.$-\frac{3}{4}$C.$-\frac{5}{3}$D.$-\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.log25•log258=$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.下列四式不能化簡為$\overrightarrow{AD}$的是(  )
A.$(\overrightarrow{AB}+\overrightarrow{CD})+\overrightarrow{BC}$B.$(\overrightarrow{AD}+\overrightarrow{MB})+(\overrightarrow{BC}+\overrightarrow{CM})$C.$\overrightarrow{OC}-\overrightarrow{OA}+\overrightarrow{CD}$D.$\overrightarrow{MB}+\overrightarrow{AD}-\overrightarrow{BM}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知在直角坐標系xOy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosθ}\\{y=2+2sinθ}\end{array}\right.$,(θ為參數(shù)),在極坐標系(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,直線l的方程為ρsin(θ+φ)=0,(其中sinφ=$\frac{1}{3}$,cosφ=$\frac{2\sqrt{2}}{3}$).
(1)求曲線C在極坐標系中的方程;
(2)求曲線C上到直線l距離最大的點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.在R上可導的函數(shù)f(x)的圖象如圖所示,則關于x的不等式x•f′(x)>0的解集為( 。
A.(-∞,-1)∪(0,1)B.(-1,0)∪(1,+∞)C.(-2,-1)∪(1,2)D.(-∞,-2)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.如圖,點A,B,D,E在⊙O上,ED、AB的延長線交于點C,AD、BE交于點F,AE=EB=BC.
(1)證明:$\widehat{DE}$=$\widehat{BD}$;
(2)若DE=2,AD=4,求DF的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.在直角坐標系中,以原點O為極點,x軸的正半軸為極軸建立極坐標系,已知曲線C的極坐標方程為ρ2-4ρcosθ+1=0,直線l的參數(shù)方程為:$\left\{\begin{array}{l}{x=3+\frac{\sqrt{3}}{2}t}\\{y=\sqrt{3}+\frac{1}{2}t}\end{array}\right.$(t為參數(shù)),點A的極坐標為(2$\sqrt{3}$,$\frac{π}{6}$),設直線l與曲線C相交于P,Q兩點.
(Ⅰ) 寫出曲線C的直角坐標方程和直線l的普通方程;
(Ⅱ) 求|AP|•|AQ|•|OP|•|OQ|的值.

查看答案和解析>>

同步練習冊答案