16.已知$sin(\frac{π}{6}-α)=\frac{1}{4}$,則$sin(\frac{π}{6}+2α)$=( 。
A.$\frac{3}{8}$B.$-\frac{3}{4}$C.$\frac{9}{8}$D.$\frac{7}{8}$

分析 應(yīng)用誘導(dǎo)公式、二倍角公式化簡三角函數(shù)式并求值,可的結(jié)果.

解答 解:∵已知$sin(\frac{π}{6}-α)=\frac{1}{4}$,則$sin(\frac{π}{6}+2α)$=cos[$\frac{π}{2}$-($\frac{π}{6}$+2α)]=cos($\frac{π}{3}$-2α)=1-2${sin}^{2}(\frac{π}{6}-α)$=1-2•$\frac{1}{16}$=$\frac{7}{8}$,
故選:D.

點(diǎn)評(píng) 本題主要考查應(yīng)用誘導(dǎo)公式、二倍角公式化簡三角函數(shù)式并求值,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知一扇形的弧所對(duì)的圓心角為60°,半徑r=6cm,則該扇形的弧長為2πcm.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,PCBM是直角梯形,∠PCB=90°,PM∥BC,PM=1,BC=2,又AC=1,∠ACB=120°,AB⊥PC,直線AM與直線PC所成的角為60°
(1)求證:平面PCBM⊥平面ABC;
(2)求三棱錐B-MAC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)變量x,y滿足約束條件$\left\{{\begin{array}{l}{2x-y-2≤0}\\{x-2y+2≥0}\\{x+y-1≥0}\end{array}}\right.$則z=x-3y的最小值是-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.函數(shù)$f(x)=\frac{{\sqrt{2x+1}}}{x}$的定義域?yàn)?[{-\frac{1}{2},0})∪({0,+∞})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖:已知空間四邊形ABCD中,AB=BC=CD=DA=a,對(duì)角線AC=$\frac{{\sqrt{6}}}{2}a$,BD=$\sqrt{2}a$,求二面角A-BD-C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.為了了解某地區(qū)高二學(xué)生的身體發(fā)育情況,抽查了該地區(qū)100名年齡為16.5歲~18歲的男生體重(kg),得到頻率分布直方圖如圖所示.根據(jù)此圖可得這100名學(xué)生中體重在[56.5,64.5)內(nèi)的學(xué)生人數(shù)是(  )
A.2B.30C.40D.50

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.某幾何體的三視圖(單位:cm)如圖所示,則該幾何體的俯視圖面積為3cm2,該幾何體的體積是3cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.曲線y=$\sqrt{x}$在x=1處的切線方程為x-2y+1=0.

查看答案和解析>>

同步練習(xí)冊(cè)答案