16.求證:f(x)=$\frac{{{a^x}-{a^{-x}}}}{2}$(a>0且a≠1)是奇函數(shù).

分析 利用奇偶函數(shù)的定義判證明函數(shù)的奇偶性.

解答 證明:函數(shù)定義域?yàn)镽;
f(-x)=$\frac{{a}^{-x}-{a}^{x}}{2}$=-$\frac{{{a^x}-{a^{-x}}}}{2}$=-f(x);
所以函數(shù)是奇函數(shù).

點(diǎn)評(píng) 本題考查了函數(shù)奇偶性的判定;利用定義分兩個(gè)步驟:一、求定義域;二、判斷f(-x)與f(x)的關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.根據(jù)如圖所示的偽代碼,可知輸出的S的值為13.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.定義函數(shù)f(x)=<x•<x>>,其中<x>表示不小于x的最小整數(shù),如<1.3>=2,<-2.1>=-2,當(dāng)x∈(0,n](n∈N*)時(shí),函數(shù)f(x)的值域?yàn)锳n,記集合An中的元素的個(gè)數(shù)為an,則$\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{{{a_{2015}}}}$=$\frac{2015}{1008}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.P是橢圓$\frac{x^2}{5}+\frac{y^2}{4}=1$上的一點(diǎn),F(xiàn)1和F2是焦點(diǎn),若∠F1PF2=30°,則△F1PF2的面積等于( 。
A.$\frac{{16\sqrt{3}}}{3}$B.$16(2+\sqrt{3})$C.$4(2-\sqrt{3})$D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.在△ABC中,內(nèi)角A,B,C的對(duì)邊長(zhǎng)分別為a,b,c,已知a2-c2=2b,且sinAcosC=3cosAsinC.
(Ⅰ)求b;
(Ⅱ)若a=6,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知a>1,且f(logax)=$\frac{a}{{{a^2}-1}}(x-\frac{1}{x})$.
(1)求f(x)的解析式;
(2)判斷f(x)的奇偶性與單調(diào)性(直接寫(xiě)出結(jié)論,不需要證明);
(3)對(duì)于f(x),當(dāng)x∈(-1,1)時(shí),有f(1-m)+f(1-m2)<0,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=$\frac{{x}^{3}}{6}$+$\frac{a}{2}$x2+2xlnx,(a∈R),在x=1處的切線斜率為-$\frac{1}{2}$.
(Ⅰ)求實(shí)數(shù)a的值及此時(shí)的切線方程;
(Ⅱ)若曲線y=f(x)上存在三條斜率為m+2的切線,三個(gè)切點(diǎn)的橫坐標(biāo)分別為x1,x2,x3(x1<x2<x3),求證:x3-x1<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.下列四個(gè)函數(shù)中,在(-∞,0)上是增函數(shù)的是( 。
A.y=x2+1B.y=1-$\frac{1}{x}$C.y=x2-5x-6D.y=3-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.如圖,O為等腰三角形ABC內(nèi)一點(diǎn),圓O與△ABC的底邊BC交于M、N兩點(diǎn)與底邊上的高AD交于點(diǎn)G,與AB、AC分別相切于E、F兩點(diǎn).
(1)證明:EF∥BC;
(2)若AG等于⊙O的半徑,且$AE=MN=2\sqrt{3}$,求四邊形EBCF的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案