分析 (1)由已知利用余弦定理即可得解c的值.
(2)利用三角函數(shù)恒等變換的應(yīng)用化簡可得f(A)=sin(2A+$\frac{π}{6}$)-$\frac{1}{2}$,利用正弦函數(shù)的性質(zhì)可求f(A)的最大值,利用正弦定理進(jìn)而可求得此時△ABC的外接圓半徑.
解答 (本題滿分為12分)
解:(1)∵b2=a2+c2-2accosB,a=3,b=$\sqrt{7}$,$B=\frac{π}{3}$,
∴7=9+c2-2×$3×c×\frac{1}{2}$,整理可得:c2-3c+2=0,
解得:c=1或2…4分
(2)由二倍角公式得f(A)=$\frac{\sqrt{3}}{2}$sin2A+$\frac{1}{2}$cos2A-$\frac{1}{2}$,
∴f(A)=sin(2A+$\frac{π}{6}$)-$\frac{1}{2}$,
∴當(dāng)A=$\frac{π}{6}$時,f(A)最大值為$\frac{1}{2}$,
此時△ABC為直角三角形,
此時△ABC的外接圓半徑:$r=\frac{1}{2}×\frac{a}{sinA}=\frac{{\sqrt{7}}}{{2×\frac{1}{2}}}=\sqrt{7}$…12分
點(diǎn)評 本題主要考查了余弦定理,三角函數(shù)恒等變換的應(yīng)用,正弦函數(shù)的性質(zhì),正弦定理在解三角形中的應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1+i | B. | -1-i | C. | 2 | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4π | B. | 3π | C. | 2π | D. | π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | i≤7 | B. | i>7 | C. | i≤6 | D. | i>6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 有95%以上的把握認(rèn)為“吸煙與患肺病有關(guān)” | |
B. | 有95%以上的把握認(rèn)為“吸煙與患肺病無關(guān)” | |
C. | 有99%以上的把握認(rèn)為“吸煙與患肺病有關(guān)” | |
D. | 有99%以上的把握認(rèn)為“吸煙與患肺病無關(guān)” |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com