6.2015年7月31日,國際奧委會在吉隆坡正式宣布2022年奧林匹克冬季奧運會(簡稱冬奧會)在北京和張家口兩個城市舉辦.某中學(xué)為了普及奧運會知識和提高學(xué)生參加體育運動的積極性,舉行了一次奧運知識競賽.隨機抽取了30名學(xué)生的成績,繪成如圖所示的莖葉圖,若規(guī)定成績在75分以上(包括75分)的學(xué)生定義為甲組,成績在75分以下(不包括75分)定義為乙組.
(1)在這30名學(xué)生中,甲組學(xué)生中有男生7人,乙組學(xué)生中有女生12人,試問有沒有90%的把握認為成績分在甲組或乙組與性別有關(guān);
(2)①如果用分層抽樣的方法從甲組和乙組中抽取5人,再從這5人中隨機抽取2人,那么至少有1人在甲組的概率是多少?
②用樣本估計總體,把頻率作為概率,若從該地區(qū)所有的中學(xué)(人數(shù)很多)中隨機選取3人,用ξ表示所選3人中甲組的人數(shù),試寫出ξ的分布列,并求出ξ的數(shù)學(xué)期望.附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$;其中n=a+b+c+d
獨立性檢驗臨界表:
P(K2>k00.1000.0500.010
K2.7063.8416.635

分析 (1)作出2×2列聯(lián)表,由列聯(lián)表數(shù)據(jù)代入公式求出K2≈1.83<2.706,從而得到?jīng)]有90%的把握認為成績分在甲組或乙組與性別有關(guān).
(2)①用A表示“至少有1 人在甲組”,利用對立事件概率計算公式能求出至少有1人在甲組的概率.
②由題意知,ξ~$B(3,\frac{2}{5})$,由此能求出ξ的分布列和數(shù)學(xué)期望.

解答 解:(1)作出2×2列聯(lián)表:

甲組乙組合計
男生7613
女生51217
合計121830
由列聯(lián)表數(shù)據(jù)代入公式得${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}≈1.83$,因為1.83<2.706,故沒有90%的把握認為成績分在甲組或乙組與性別有關(guān).(6分)
(2)①用A表示“至少有1人在甲組”,則$p(A)=1-\frac{C_3^2}{C_5^2}=\frac{7}{10}$.(8分)
②由題知,抽取的30名學(xué)生中有12名學(xué)生是甲組學(xué)生,抽取1名學(xué)生是甲組學(xué)生的概率為$\frac{12}{30}=\frac{2}{5}$,那么從所有的中學(xué)生中抽取1名學(xué)生是甲組學(xué)生的概率是$\frac{2}{5}$,又因為所取總體數(shù)量較多,抽取3名學(xué)生可以看出3次獨立重復(fù)實驗,于是ξ服從二項分布$B(3,\frac{2}{5})$.
顯然ξ的取值為0,1,2,3.且$P(ξ=k)=C_3^k{(\frac{2}{5})^k}{(1-\frac{2}{5})^{3-k}},k=0,1,2,3$.
所以得分布列為:
ξ0123
P$\frac{27}{125}$$\frac{54}{125}$$\frac{36}{125}$$\frac{8}{125}$
數(shù)學(xué)期望$Eξ=3×\frac{2}{5}=\frac{6}{5}$(12分)

點評 本題考查莖葉圖的應(yīng)用,考查概率的求法,考查二項分布的性質(zhì)的合理運用,考查離散型隨機變量的分布列和數(shù)學(xué)期望的求法,是中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若直線l的傾斜角的取值范圍為[$\frac{π}{3}$,$\frac{3π}{4}$],則直線l的斜率的取值范圍為(-∞,-1]∪[$\sqrt{3}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在平行四邊形ABCD中,$\overrightarrow{AC}$•$\overrightarrow{CB}$=0,AC=$\sqrt{2}$,BC=1,若將其沿AC折成直二面角D-AC-B,三棱錐D-ABC的各頂點都在球O的球面上,則球O的表面積為( 。
A.16πB.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知圓心為C的圓經(jīng)過點A(1,1)和B(2,-2),且圓心C在直線l:x-y+1=0上,則點C與坐標原點的距離為( 。
A.$\sqrt{13}$B.5C.13D.25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.為了解人們對于國家新頒布的“生育二胎放開”政策的熱度,現(xiàn)在某市進行調(diào)查,隨機調(diào)查了50人,他們年齡的頻數(shù)分布及支持“生育二胎”人數(shù)如表:
年齡[5,15)[15,25)[25,35)[35,45)[45,55)[55,65)
頻數(shù)510151055
支持“生育二胎”4512821
(1)由以上統(tǒng)計數(shù)據(jù)填下面2乘2列聯(lián)表,并問是否有的99%把握認為以45歲為分界點對“生育二胎放開”政策的支持度有差異:
(2)若對年齡在[5,15)的被調(diào)查人中各隨機選取兩人進行調(diào)查,恰好兩人都支持“生育二胎放開”的概率是多少?
年齡不低于45歲的人數(shù)年齡低于45歲的人數(shù)合計
支持a=c=
不支持b=d=
合計
參考數(shù)據(jù):
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知某幾何體的三視圖如圖所示,則該幾何體的體積為(  )
A.180B.360C.144+72$\sqrt{2}$D.108

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知直線3x+4y+c=0與圓心為C的圓x2+(y-1)2=2相交于A,B兩點,且△ABC為直角三角形,則實數(shù)c等于1或-9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.直線y=kx+3被圓(x-2)2+(y-3)2=4截得的弦長為$2\sqrt{3}$,則k=( 。
A.±$\frac{\sqrt{3}}{3}$B.±$\sqrt{3}$C.$\frac{\sqrt{3}}{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.數(shù)列0,$\frac{2}{3}$,$\frac{4}{5}$,$\frac{6}{7}$,…的一個通項公式為( 。
A.an=$\frac{n-1}{n+1}$  (n∈N*B.an=$\frac{n-1}{2n+1}$  (n∈N*
C.an=$\frac{2n}{2n+1}$ (n∈N*D.an=$\frac{2(n-1)}{2n-1}$ (n∈N*

查看答案和解析>>

同步練習冊答案