20.設(shè)x∈R,則“|x-1|<2”是“0<x+1<5”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充要條件D.既不充分也不必要條件

分析 求出不等式的等價(jià)條件,根據(jù)充分條件和必要條件的定義進(jìn)行判斷.

解答 解:由|x-1|<2得-2<x-1<2即-1<x<3,
由0<x+1<5得-1<x<4,
即“|x-1|<2”是“0<x+1<5”的充分不必要條件,
故選:A

點(diǎn)評(píng) 本題主要考查充分條件和必要條件的判斷,根據(jù)不等式的關(guān)系結(jié)合充分條件和必要條件的定義是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.命題“?x∈R,使得x2-1<0”的否定是“?x∈R,均有x2-1≥0”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知f(x)=x3+x2+ax,a∈R是常數(shù).
(Ⅰ)a=-1時(shí),求函數(shù)f(x)在區(qū)間(0,1)上的值域;
(Ⅱ)若曲線y=f(x)有且僅有一條平行于直線y=x的切線,求a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知f(x)是定義在R上的函數(shù),且滿足f(x+2)=-$\frac{1}{f(x)}$,當(dāng)2≤x<4,f(x)=x,則f(2016)=( 。
A.2B.-2C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.拋物線y=-x2+2x與x軸圍成的封閉圖形的面積是(  )
A.$\frac{3}{4}$B.1C.$\frac{4}{3}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.不等式3x-4y+6<0表示的平面區(qū)域在直線3x-4y+6=0的( 。
A.右上方B.右下方C.左上方D.左下方

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,對(duì)任意的正整數(shù)n,都有an=5Sn+1成立,記bn=$\frac{4+{a}_{n}}{1-{a}_{n}}$(n∈N*).
(Ⅰ)求數(shù)列{an}和數(shù)列{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{bn}的前n項(xiàng)和為Rn,求證:對(duì)任意的n∈N*,都有Rn<4n;
(Ⅲ)記cn=b2n-b2n-1(n∈N*),設(shè)數(shù)列{cn}的前n項(xiàng)和為Tn,求證:對(duì)任意n∈N*,都有Tn<$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=x3+3x2-9x+3.求:
(Ⅰ)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.從集合{1,2,3,…,11}中任意取兩個(gè)元素作為橢圓$\frac{{x}^{2}}{{m}^{2}}$+$\frac{{y}^{2}}{{n}^{2}}$=1方程的m和n,則能構(gòu)成焦點(diǎn)在x軸上的橢圓個(gè)數(shù)為( 。
A.55B.90C.110D.121

查看答案和解析>>

同步練習(xí)冊答案