分析 根據(jù)函數(shù)的周期性作出函數(shù)f(x)的圖象,利用數(shù)形結(jié)合即可得到結(jié)論.
解答 解:由g(x)=f(x)-kx-k=0
得f(x)=kx+k=k(x+1),
設(shè)y=h(x)=k(x+1),則直線(xiàn)h(x)過(guò)點(diǎn)(-1,0),
∵函數(shù)f(x)的周期是4,
∴作出函數(shù)f(x)的圖象如圖:
①若直線(xiàn)斜率k=0時(shí),不滿(mǎn)足條件,
②若k>0,當(dāng)直線(xiàn)經(jīng)過(guò)點(diǎn)A(2,1)時(shí),此時(shí)直線(xiàn)和函數(shù)f(x)有3個(gè)不同的交點(diǎn),此時(shí)由3k=1,解得k=$\frac{1}{3}$,
當(dāng)直線(xiàn)在B處與半圓相切時(shí),直線(xiàn)和函數(shù)f(x)有5個(gè)不同的交點(diǎn),
此時(shí)圓心(4,0)到直線(xiàn)kx-y+k=0的距離d=$\frac{|4k+k|}{\sqrt{1+{k}^{2}}}=1$,
即|5k|=$\sqrt{1+{k}^{2}}$,解得k=$\frac{{\sqrt{6}}}{12}$,此時(shí)若滿(mǎn)足條件,則$\frac{{\sqrt{6}}}{12}$<k<$\frac{1}{3}$,
③若k<0,當(dāng)直線(xiàn)經(jīng)過(guò)點(diǎn)D(-6,1)時(shí),此時(shí)直線(xiàn)和函數(shù)f(x)有5個(gè)不同的交點(diǎn),此時(shí)由-5k=1,解得k=-$\frac{1}{5}$,
當(dāng)直線(xiàn)在C處與半圓相切時(shí),直線(xiàn)和函數(shù)f(x)有3個(gè)不同的交點(diǎn),
此時(shí)圓心(-4,0)到直線(xiàn)kx-y+k=0的距離d=$\frac{|-4k+k|}{\sqrt{1+{k}^{2}}}=\frac{|3k|}{\sqrt{1+{k}^{2}}}=1$,
即|3k|=$\sqrt{1+{k}^{2}}$,解得k=-$\frac{{\sqrt{2}}}{4}$,此時(shí)若滿(mǎn)足條件,則-$\frac{{\sqrt{2}}}{4}$<x<-$\frac{1}{5}$,
綜上k∈(-$\frac{{\sqrt{2}}}{4}$,-$\frac{1}{5}$)∪($\frac{{\sqrt{6}}}{12}$,$\frac{1}{3}$),
故答案為:(-$\frac{{\sqrt{2}}}{4}$,-$\frac{1}{5}$)∪($\frac{{\sqrt{6}}}{12}$,$\frac{1}{3}$)
點(diǎn)評(píng) 本題主要考查函數(shù)零點(diǎn)和方程的應(yīng)用,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.綜合性較強(qiáng),有一定的難度.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a<b<c | B. | b<a<c | C. | c<a<b | D. | c<b<a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{3}$ | B. | 1 | C. | $\sqrt{3}$或-$\sqrt{3}$ | D. | 1或-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,2) | B. | (2,+∞) | C. | (1,2) | D. | (2,3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 相切 | B. | 相交 | C. | 相離 | D. | 內(nèi)含 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com