8.等差數(shù)列{an}的前n項(xiàng)和記為Sn,已知a10=30,a20=50,Sn=242,求n.

分析 由題已知a10=30,a20=50,Sn=242可運(yùn)用等差數(shù)列的定義(化為基本量a1,d),可建立關(guān)a1,d的方程,再利用求和公式求解可得.

解答 解:設(shè)等差數(shù)列{an}的公差為d,
∵a10=30,a20=50,∴$\left\{\begin{array}{l}{a_1}+9d=30\\{a_1}+19d=50\end{array}\right.,\left\{\begin{array}{l}{a_1}=12\\ d=2\end{array}\right.$.
由Sn=242,可得:12n+$\frac{2n(n-1)}{2}$=242,
化為:n2+11n-242=0,n∈N*
解得n=11.

點(diǎn)評 本題考查了等差數(shù)列的通項(xiàng)公式與求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.用描述法表示下列集合
(1)方程x3+4x=0的所有實(shí)數(shù)根組成的集合;
(2)所有奇數(shù)組成的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.到兩條互相垂直的異面直線距離相等的點(diǎn)的軌跡,被過一直線與另一直線垂直的平面所截,截得的曲線為( 。
A.相交直線B.雙曲線C.拋物線D.橢圓弧

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,點(diǎn)D是AB的中點(diǎn).
(1)求證:AC⊥BC1;
(2)求證:AC1∥平面CDB1;
(3)求二面角B-DC-B1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.“正三角形內(nèi)部任意一點(diǎn)到3條邊的距離之和為正三角形的高”類比到空間的一個(gè)結(jié)論為正四面體內(nèi)部任意一點(diǎn)到4個(gè)面的距離之和為正四面體的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知小矩形花壇ABCD中,AB=3m,AD=2m,現(xiàn)要將小矩形花壇建成大矩形花壇AMPN,使點(diǎn)B在AM上,點(diǎn)D在AN上,且對角線MN過點(diǎn)C.
(1)要使矩形AMPN的面積大于32m2,AN的長應(yīng)在什么范圍內(nèi)?
(2)M,N是否存在這樣的位置,使矩形AMPN的面積最?若存在,求出這個(gè)最小面積及相應(yīng)的AM.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知△ABC的三個(gè)內(nèi)角A,B,C所對的邊分別為a,b,c,若三個(gè)內(nèi)角A,B,C成等差數(shù)列,且a=$\sqrt{2}$,b=$\sqrt{3}$,求sinC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.定義在R上的函數(shù)f(x),其周期為4,且當(dāng)x∈[-1,3]時(shí),f(x)=$\left\{\begin{array}{l}\sqrt{1-{x^2}},x∈[-1,1]\\ 1-|x-2|,x∈(1,3]\end{array}$,若函數(shù)g(x)=f(x)-kx-k恰有4個(gè)零點(diǎn),則實(shí)數(shù)k的取值范圍是(-$\frac{{\sqrt{2}}}{4}$,-$\frac{1}{5}$)∪($\frac{{\sqrt{6}}}{12}$,$\frac{1}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若集合A={x|kx2-2x-1=0}只有一個(gè)元素,則實(shí)數(shù)k的取值集合為( 。
A.{-1}B.{0}C.{-1,0}D.(-∞,-1]∪{0}

查看答案和解析>>

同步練習(xí)冊答案