分析 根據(jù)奇偶函數(shù)的定義,逐一分析四個結(jié)論的真假,綜合討論結(jié)果,可得答案.
解答 解:下列說法中:
①若f(x)=ax2+(2a+b)x+2(其中x∈[2a-1,a+4])是偶函數(shù),
則2a-1+a+4=0,2a+b=0,
解得:a=-1,b=2;故正確
②f(x)=$\sqrt{2008-{x}^{2}}$+$\sqrt{{x}^{2}-2008}$=0,(x∈{-$\sqrt{2008}$,$\sqrt{2008}$}),
即滿足f(-x)=-f(x)恒成立,也滿足f(-x)=f(x)恒成立,
故既是奇函數(shù)又是偶函數(shù);故正確
③已知f(x)是定義在R上的奇函數(shù),
若當x∈[0,+∞)時,f(x)=x(1+x),
則當x∈(-∞,0)時,f(x)=x(1-x),
則當x∈R時,f(x)=x(1+|x|);故正確;
④已知f(x)是定義在R上的不恒為零的函數(shù),且對任意的x,y∈R都滿足f(x•y)=x•f(y)+y•f(x),
由題意令x=y=1,可得f(1)=f(1)+f(1),
∴f(1)=0
令a=y=-1,可得f(1)=-f(-1)-f(-1),所以f(-1)=0;
令a=x,b=-1,所以f(-x)=x f(-1)-f(x)=-f(x);
∴y=f(x)是奇函數(shù). 故正確;
故答案為:①②③④
點評 本題以命題的真假判斷與應(yīng)用為載體,考查了函數(shù)的奇偶性判斷及應(yīng)用,難度中檔.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,+∞) | B. | (2,+∞) | C. | (0,2) | D. | (1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{3}}}{3}$ | B. | $-\frac{{\sqrt{3}}}{3}$ | C. | $\frac{{\sqrt{6}}}{3}$ | D. | $-\frac{{\sqrt{6}}}{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {1,2,3,4} | B. | {1,2,3} | C. | {2,3} | D. | {2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 點P在圓C內(nèi) | B. | 點P在圓C上 | ||
C. | 點P在圓C內(nèi)或圓C上 | D. | 點P在圓C上或圓C外 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a<b<c | B. | c<a<b | C. | a<c<b | D. | c<b<a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,2] | B. | (-∞,$\frac{1}{2}$)∪($\frac{1}{2}$,2] | C. | ($\frac{1}{2}$,2] | D. | [2,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com