【題目】檢驗中心為篩查某種疾病,需要檢驗血液是否為陽性,對份血液樣本,有以下兩種檢驗方式:①逐份檢驗,需要檢驗次;②混合檢驗,即將其中(且)份血液樣本分別取樣混合在一起檢驗,若檢驗結(jié)果為陰性,這份的血液全為陰性,因而這份血液樣本只要檢驗一次就夠了,如果檢驗結(jié)果為陽性,為了明確這份血液究竟哪幾份為陽性,再對這份再逐份檢驗,此時這份血液的檢驗次數(shù)總共為次.假設在接受檢驗的血液樣本中,每份樣本的檢驗結(jié)果是陽性還是陰性都是獨立的,且每份樣本是陽性結(jié)果的概率為.
(1)假設有5份血液樣本,其中只有2份樣本為陽性,若采用逐份檢驗方式,求恰好經(jīng)過2次檢驗就能把陽性樣本全部檢驗出來的概率;
(2)現(xiàn)取其中(且)份血液樣本,記采用逐份檢驗方式,樣本需要檢驗的總次數(shù)為,采用混合檢驗方式,樣本需要檢驗的總次數(shù)為點.當時,根據(jù)和的期望值大小,討論當取何值時,采用逐份檢驗方式好?
(參考數(shù)據(jù):,,,,,.)
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x2+acosx.
(1)求函數(shù)f(x)的奇偶性.并證明當|a|≤2時函數(shù)f(x)只有一個極值點;
(2)當a=π時,求f(x)的最小值;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】11月,2019全國美麗鄉(xiāng)村籃球大賽在中國農(nóng)村改革的發(fā)源地-安徽鳳陽舉辦,其間甲、乙兩人輪流進行籃球定點投籃比賽(每人各投一次為一輪),在相同的條件下,每輪甲乙兩人在同一位置,甲先投,每人投一次球,兩人有1人命中,命中者得1分,未命中者得-1分;兩人都命中或都未命中,兩人均得0分,設甲每次投球命中的概率為,乙每次投球命中的概率為,且各次投球互不影響.
(1)經(jīng)過1輪投球,記甲的得分為,求的分布列;
(2)若經(jīng)過輪投球,用表示經(jīng)過第輪投球,累計得分,甲的得分高于乙的得分的概率.
①求;
②規(guī)定,經(jīng)過計算機計算可估計得,請根據(jù)①中的值分別寫出a,c關于b的表達式,并由此求出數(shù)列的通項公式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線C:,過拋物線焦點F的直線交拋物線C于A,B兩點,P是拋物線外一點,連接,分別交拋物線于點C,D,且,設,的中點分別為M,N.
(1)求證:軸;
(2)若,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)討論的單調(diào)性;
(2)若在定義域內(nèi)是增函數(shù),且存在不相等的正實數(shù),使得,證明:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對有個元素的總體進行抽樣,先將總體分成兩個子總體和(是給定的正整數(shù),且),再從每個子總體中各隨機抽取2個元素組成樣本.用表示元素和同時出現(xiàn)在樣本中的概率.
(1)求的表達式(用,表示);
(2)求所有的和.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com