16.在△ABC中,角A,B,C的對邊分別是a,b,c,若$\frac{a}{sinB}$+$\frac{sinA}$=2c,則∠C的大小是$\frac{π}{2}$.

分析 利用正弦定理化簡已知等式得:$\frac{sinA}{sinB}$+$\frac{sinB}{sinA}$=2sinC,進(jìn)而a2+b2=2absinC≥2ab,得出sinC=1,即可得出結(jié)論.

解答 解:利用正弦定理化簡已知等式得:$\frac{sinA}{sinB}$+$\frac{sinB}{sinA}$=2sinC,
∴sin2A+sin2B=2sinAsinBsinC,
∴a2+b2=2absinC≥2ab,
∴sinC=1
∴C=$\frac{π}{2}$,
故答案為$\frac{π}{2}$.

點(diǎn)評 此題考查了正弦定理,熟練掌握正弦定理是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在△ABC中,角A,B,C所對的邊分別為a,b,c,cos$\frac{A}{2}$=$\frac{2\sqrt{5}}{5}$,$\overrightarrow{AB}$•$\overrightarrow{AC}$=3.
(1)求△ABC的面積S.
(2)若b+c=6,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.某福彩中心準(zhǔn)備發(fā)行一種面值為2元的福利彩票刮刮卡,設(shè)計(jì)方案如下:
①該福利彩票中獎概率為0.2;
②每張中獎彩票的中獎獎金有5元,10元和100元三種;
③顧客購買一張彩票,獲得10元獎金的概率為0.08,獲得100元獎金的概率為p.
(1)若某顧客每天都買一張?jiān)擃愋偷母@势,求其在?天才中獎的概率;
(2)福彩中心為了能夠籌得資金資助福利事業(yè)持續(xù)發(fā)展,應(yīng)如何設(shè)定P的取值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知集合A={a,a2},B={1,b},若A=B,則a+b=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x,x>0}\\{{3}^{-x}+1,x≤0}\end{array}\right.$,則f(1)+f(log3$\frac{1}{2}$)的值是( 。
A.5B.3C.-1D.$\frac{7}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如圖,在底面邊長為1,高為2的正四棱柱ABCD-A1B1C1D1中,點(diǎn)P是平面A1B1C1D1內(nèi)一點(diǎn),則三棱錐P-BCD的正視圖與側(cè)視圖的面積之和為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在(1+x3)(1-x)10的展開式中,x5的系數(shù)是( 。
A.-297B.-207C.252D.297

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=$\frac{{e}^{x}}{x}$+a(x-lnx).(e為自然對數(shù)的底數(shù))
(Ⅰ)當(dāng)a>0時,試求 f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)在x∈($\frac{1}{2}$,2)上有三個不同的極值點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖所示,矩形ABCD的頂點(diǎn)A,D分別在x軸,y軸正半軸(含坐標(biāo)原點(diǎn))滑動,其中AD=4,AB=2.
(1)若∠DAO=$\frac{π}{4}$,求|$\overrightarrow{OC}$+$\overrightarrow{OD}$|;
(2)求$\overrightarrow{OB}$•$\overrightarrow{OC}$的最大值.

查看答案和解析>>

同步練習(xí)冊答案