1.已知f(x)=$\left\{\begin{array}{l}{2^{1-x}},x≤1\\ 1-{log_2}^x,x>1\end{array}$則滿足f(x)≤2的x取值范圍是( 。
A.[-1,2]B.[0,2]C.[1,+∞)D.[0,+∞)

分析 利用分段函數(shù)得到兩個對應(yīng)的不等式組解之即可.

解答 解:由已知,得到$\left\{\begin{array}{l}{{2}^{1-x}≤2}\\{x≤1}\end{array}\right.$或者$\left\{\begin{array}{l}{1-lo{g}_{2}x≤2}\\{x>1}\end{array}\right.$,
解得$\left\{\begin{array}{l}{x≥0}\\{x≤1}\end{array}\right.$或者$\left\{\begin{array}{l}{x≥\frac{1}{2}}\\{x>1}\end{array}\right.$,
所以滿足f(x)≤2的x取值范圍是[0,1]∪(1,+∞)=[0,+∞);
故選D

點評 本題考查了指數(shù)不等式和對數(shù)不等式的解法;關(guān)鍵是轉(zhuǎn)化為整式不等式解之.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)函數(shù)f(x)對任意x,y∈R,都有f(x+y)=f(x)+f(y),且當(dāng)x>0時,f(x)<0,又f(1)=-2.
(I)求f(0)的值;    (II)求證:f(x)是奇函數(shù);
(III)當(dāng)-3≤x≤3時,不等式f(x)≤2m-1恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=x2-2x+4.?dāng)?shù)列{an}是公差為d的等差數(shù)列,且a1=f(d-1),a3=f(d+1).
(1)求數(shù)列{an}的通項公式.
(2)若Sn為數(shù)列{an}的前項和,求證:$\frac{1}{S_1}+\frac{1}{S_2}+\frac{1}{S_3}…+\frac{1}{{S{\;}_n}}<\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)集合P={(x,y)|x+y<4,x,y∈N*},則集合P的非空子集個數(shù)是7個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x}(x≤0)}\\{f(x-3)(x>0)}\end{array}$,則f(2013)=(  )
A.2B.1C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若實數(shù)x,y滿足$\left\{\begin{array}{l}{x-y+1≥0}\\{y+1≥0}\\{x+y+1≤0}\end{array}\right.$,則z=2x-y的最大值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)全集U為整數(shù)集,集合A={x∈N|y=$\sqrt{7x-{x}^{2}-6}$},B={x∈Z|-1<x≤3},則圖中陰影部分表示的集合的真子集的個數(shù)為( 。
A.3B.4C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知 $\overrightarrow a=({2,1}),\overrightarrow b=({3,m})$,若$\overrightarrow a⊥({\overrightarrow a-\overrightarrow b})$,則$|{\overrightarrow a+\overrightarrow b}|$=( 。
A.3B.4C.5D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知函數(shù)f(x)的定義域[-1,5],部分對應(yīng)值如表,f(x)的導(dǎo)函數(shù)y=f′(x)的圖象如圖所示.
x-10245
y12021
(1)方程f[f(x)]=0的不等實根的個數(shù)為2;
(2)方程f[f(x)]-a=0,a∈[-1,2]的不等實根的個數(shù)構(gòu)成的集合為{1,2,4}.

查看答案和解析>>

同步練習(xí)冊答案